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\/m_ga;..(\/ 9TF) = 5 (Gign) T, (5.85)

Integrating both sides over the proper volume /—g d'z we get the result

/ d'x0y (V=gTF) = / d*zy/=gT! - / d*zy/=gT! = Qi(ta) — Qi(t1)
JY of o <+ 1
1 4 Ko
= 5 [ d'ay=g T (dign). (5.86)
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The first equality follows from the standard application of the Gauss theorem. This
shows that the difference ();(f2) — (2;(%;) is nonzero and is related to an integral

over a term containing J;gx;. As long as ;g is nonzero, the right hand side, in
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general, will not vanish and (;(!) is no longer conserved. As we said before, this
is exactly what we will expect in the presence of an external gravitational field.






We shall now discuss some explicit examples of the equation V; 7% = 0 starting
with the energy-momentum tensor for a single particle. In special relativity, one
could have taken the expression to be

T — m / dplz® — 2%(7)| v u" dr, (5.88)

m

where 2“(7) is the trajectory of the particle. In this expression, v u" d7 is generally

covariant but not the Dirac delta function. It is, however, easy to see from the

relation

“op(z?)
V=g

that 6p(x)//—g is a scalar. Therefore, the generally covariant definition of the

(= / op(x®)die = V—g d'z (5.89)

energy-momentum tensor for a single particle is given by






