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Negative masses, even if isolated, imply self-acceleration,
hence a catastrophic world
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Summary. — The conjecture of the existence of negative masses together with
ordinary positive masses leads to runaway motions even if no self-reaction is
considered. Pollard and Dunning-Davies have shown other constraints as a
modification of the principle of least action and that negative masses can only exist at
negative temperatures, and must be adiabatically separate from positive masses. We
show here that the self-reaction on a single isolated negative mass implies a runaway
motion. Consequently, the consideration of self-fields and relevant self-reaction
excludes negative masses even if isolated.

PACS 03.50.De — Maxwell theory: general mathematical aspects.
PACS 03.30 — Special relativity.

1. — Introduction

The conjecture of the existence of negative masses has been considered by several
authors beginning with a paper by Ramsey [1], followed by an excellent review of Bondi
in general relativity [2]. The previous works have been summarized in a recent paper of
Pollard and Dunning-Davies [3] who introduce other constraints for the possibility of
the existence of negative masses. Runaway motion for two interacting masses, one
positive and one negative, is a recurrent feature throughout. Consider, for example,
two equal and opposite interacting masses. Because of the equivalence principle the
gravitational interaction is repulsive. However, because of Newton’s law, the negative
mass accelerates toward the positive mass and a runaway motion starts. In special
relativity (SR) the velocities of both particles tend to the speed of light c.

Apart from some works of science fiction [4], other drawbacks have been found
beside the runaway motion. For instance, Ramsey [1] has shown that a gas of negative-
mass molecules implies negative temperatures and, consequently, that the Kelvin
statement of the second principle of thermodynamics has to be altered in order to
incorporate negative temperatures.
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Bonner [5] has pointed out that a negative-mass gas supports tensions rather than
pressures in spite of the collisions and bouncings of the molecules on the walls.

Pollard and Dunning-Davies [3] introduce a necessary modification to the principle
of least action to account for negative masses. Moreover, they give other reasons to the
conclusion of previous authors [1, 2, 5] that positive and negative masses cannot coexist.
They emphasize that negative masses can only exist at negative temperatures, and
must be adiabatically separated from positive masses. This separation, according to
them, would rule out runaway motion. Our conclusion is that even this separation is
unable of preventing the runaway motion. Actually, as shown in sect.2, the
self-reaction of any kind of field on itself brings about a runaway motion of an isolated
negative mass.

To our knowledge there is only Winterberg [6] who has introduced negative masses
together with positive masses at the same time disregarding the runaway motions.
Precisely, Winterberg, in his main paper [6], has proposed that there might be an
underlying non-relativistic superfluid substratum of densely packed positive and
negative Planck masses, permeating all of space, and making up what may be called the
Planck ether. Winterberg, in his alleged “Planck Aether Theory”, assumes positive
Planckions (with inertial and gravitational masses both positive) and negative
Planckions (with inertial and gravitational masses both negative), so that for both types
of Planckions Einstein’s equivalence principle is formally satisfied. The introduction of
negative masses has two aims, namely: i) to have a cosmological constant (in general
relativity) exactly equal to zero; ii) to overcome the divergence problems of relativistic
quantum field theories.

Winterberg does not discuss the possibility, or not, to eliminate the runaway
motions. Perhaps he thinks to have avoided them by assuming point-contact forces
between his Planckions. Actually, point-contact forces are very short-range
interactions. In a head-on collision between two opposite Planckions the positive one
bounces normally while the negative Planckion bounces toward the positive one so that
the contact collision goes on for ever implying a continuous acceleration of the
Planckion pair. To avoid this kind of runaway motion the positive Planckion must not
interact with the negative Planckion. This is equivalent to the separation of positive
masses from negative masses as the unique condition of existence of negative inertia.

However, if we show that a single, isolated, negative Planckion brings about a
self-acceleration the assumption of absence of interaction between positive and negative
Planckions is of no help.

The self-acceleration is due to the fields internal to each Planckion, fields that are
necessary to keep together each Planckion and to produce the stresses consequent to
collisions. In passing, we notice that if the Planckions have only short-range inter-
actions (as claimed by Winterberg), it is impossible to explain the origin of the long-
range electromagnetic and gravitational interactions as attempted by Winterberg [6].

2. — The assumption of a negative mass implies its self-acceleration

We show that a negative mass, with negative total energy, has a negative inertia so
that it auto-accelerates and the kinetic energy would tend to minus infinity. The best
way to show that a particle with negative inertia undergoes a self-acceleration is to
consider the contribution to the inertia due to the acceleration field radiated by the
particle itself. During all its past history the particle has undergone at least one action
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by part of an external field (the action is continuous if we consider the vacuum
fluctuations due to the zero-point field). When the particle was accelerated any part of
it radiated an acceleration field which acted on all the other parts of the particle at a
retarded time. The mutual actions of all the parts of the particle produce a force
opposite to the acceleration. If the mass is positive (as occurs for all the physical
particles) the retarded force brings about an acceleration smaller than, and opposite to,
the initial acceleration. But if the inertia is negative the initial acceleration is increased
and an avalanche process occurs. Let us formalize what said by using the
electromagnetic field for simplicity. For the gravitational field the self-reaction has
been explicitly calculated [7] and the result is similar for any interaction as shown in
field theory [8], where energy conservation is valid (obviously, for positive masses). The
relativistic equation of motion for a particle of bare mass m,, charge g, volume V is

d(yv
V) :q(Eext+ v xBext)Jr” d3rQ(ES+ v xBS),
dt c v c

1) Mo

where y = (1 —v?/c?) /2, the subscript “ext” stands for “external”, and the subscript
“s” for self-fields given by the Lienard-Wiechert solutions:
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where the non-rationalized Gauss system is used, a(t) = dv/dt, and
3) r=(r—r)/[r-r| and t,=t—|r—r'|/c.

To show the self-acceleration of a charged negative mass it is sufficient to consider
incipient motion for which we can neglect v/c so that y —1, and eq. (1) reduces to
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Let us substitute eq. (5) into eq. (4) when the external fields have vanished. The first
term inside the curly bracket of eq. (5) represents the velocity field and its resultant
action is zero. The second term is the acceleration field and its resultant is different
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from zero as can immediately be seen from the double cross product. Both v and
a=dv/dt in the integral are calculated at the advanced time t, (with respect to the
present time t of the field point). Consequently, eq. (4) becomes, if all the parts of the
particle have the same acceleration at time t, i.e. if a depends on r’ only through
ta(r, '),

(6) moa(t) = — ” dro(r, t)f”d% o(r, 1) A —alt) T

Ceffr-r|

We apply eq. (6) to the case of a sphere of radius R having a charge density o(r, t)
with spherical symmetry. Presumed that a kept the same direction at least from
t—2R/c to t, projecting eq. (6) on this direction, and calling & the angle between a
and r, gives

% moalt) = ”fd%g(r t)J”d% o(r' 1) aty) S-S0 ET )
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The whole integrand is positive so that the right-hand side (RHS) of eq. (7) is negative.
Consequently, if my> 0 the RHS of eq. (7) is < 0, while the LHS is > 0. There are no
possibilities to find a positive-definite function a(t) that satisfies the integral equa-
tion (7) and physical runaway solutions are excluded: the only physical solution of the
integral equation (7) is a(t) =0. This result can also be obtained by performing a
Lagrange expansion of a(t,) around t, =t, thus obtaining the Lorentz series for the
RHS of eq. (7). It has been proved [9] that the equation of motion with the Lorentz
series is equivalent to the following finite-difference equation:

_ Mo vt —
®) F= At [v(t) — v(t - AD)],

where At=15R/c is the time taken by light to cross 1.5 times the particle radius R
(typically the Lorentz electron radius RL=e2/(mocz)). When F =0, then eq. (8)
becomes v(t) = v(t — At) whose only solution is v(t) = const, hence a = 0. The famous
spurious runaway solutions arise if one truncates the series after two terms (the
second term is the well-known radiation damping 2e?(3c®) ~'da/dt, where e is the total
charge). The relevant runaways are unphysical and a consequence of the series
truncation.

On the contrary, if my <0 it is possible to find a function a(t,) in the time interval
from t—2R/c to t such that both sides of eq. (7) become equal. If we take a(t,) =
constant, the RHS of eq. (7) becomes m.,, a, where m,,, is the electromagnetic mass
due to the self-reaction which, if o is constant as well, turns out to be given by m,,, =
4e2/(5 R) which is equal to ¢ ~? times the sum of the electrostatic and the Poincaré
energy:

(9) Mem = 3

= = (Ues + Upgincars) =
5RC2 Cz( es. Pomcare) 5RC2

4e? 1 3e? ( 1)

1 .
The Poincaré stresses (and the relevant energy) are necessary to prevent the charge to
explode because of the repulsive action of its own charge. We do not therefore agree
with Rohrlich [10] who disregarded the Poincaré stresses and changed the usual



NEGATIVE MASSES, EVEN IF ISOLATED, ETC. 901

expression of the electromagnetic momentum. The e.m. mass m, is due to the
self-action and is independent of any definition of the e.m. momentum. Moreover,
eq. (9) shows the consistency of m,, c? with the total energy (including the Poincaré
one).

If mg,, > |mg|, then a(t,) has to be smaller than a(t). A typical function satisfying
this condition is an increasing exponential. If m,,, < |m,|, then a(t,) must be larger
than a(t) that turns out to be given by a decreasing exponential. In any case there is a
spontaneous self-acceleration. In the first case, the velocity increases exponentially
while in the second case it reaches an asymptotic value.

In the second case (i.e. when m,,, < |my|) a world with negative masses is not so
catastrophic as in the case mey, > |my| (where an exponential increase of the
acceleration would occur). However, we have to take into account the presence of the
ubiquitous zero-point field (ZPF), which causes fluctuations for any charged particle. A
charged particle with my <0 and m,,, < |m,| would have a good probability to start an
amplified variation of velocity at any fluctuation caused by the ZPF. The observable
effect would be by far due to the consequent diffusion of the particle positions rather
than to the amplified velocity fluctuations. The direct diffusion caused by the ZPF on
an electron (that has a positive mass as that of all the observed particles) is negligible if
the particle is free in space. Its component along the x-axis turns out to be given
by [11]

(10)  AX*=([x(t + t) = X(t)F*) =

- aseszn o [e]] ool (]

am T

where E; is the exponential integral, and 7 =2e? /(3mc?) is two-thirds the time taken
by light to cross the classical electron radius. For t>>7/a, where a =e? /(hc) is the
fine-structure constant, eq. (10) reduces to

2 ht 2at
(11) AX —1.1544+2 In — .
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This expression applied to an electron in a TV set gives Ax?=13Rc R, , where R is the

Compton radius and R, the classical electron radius, so that \/Ax?= 10" cm, which is
absolutely negligible.

This very low diffusion is due to the highly non-Markovian character of the ZPF
stochastic process. If some damped runaways (present in the hypothetical case my <0
and me, <|my|) are triggered by the ZPF fluctuations, the stochastic process
becomes Markovian with a diffusion given by

(12) Ax?=4Dt,

where D =1 Av/3 is the diffusion coefficient, A the mean free path, and Av the velocity
variation due to the self-acceleration. Even with a low Av, for instance Av = 10°cm/s,
and A=1cm, inatime t=10"%s (as that taken by an electron to travel from the cathod

to the screen of a TV set) it would be Ax?=10"2cm? or \/Ax?=1 mm, much higher
than what observed.
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3. — Conclusions

From time to time many authors have considered the possibility of existence of
particles with negative masses. Some authors [1, 2] have examined this possibility by an
excellent state-of-the-art, pointing out important limitations to the hypothetical
existence of negative masses. The most severe criticism against the simultaneous
presence of both positive and negative masses is the consequent appearance of
runaway motions. This is a glutton morsel for science fiction and, in fact, Forward [4]
hypothetized space ships composed of positive and negative masses.

A completely different, and isolated, attitude is that of Winterberg [6] who
introduced a substratum, or ether, made of equal and opposite particles he denoted as
Planckions. The “opposite” includes negative masses as well, and this is the worst
condition since runaways occur. Winterberg seems to be completely unaware of this
fact and he does not even mention it, at least to suggest a hint for avoiding them. The
reason why he introduced a non-relativistic substratum of densely packed positive and
negative Planck masses, was to have a cosmological constant exactly equal to zero. As is
known, the gravest problem in relativistic cosmology is the presence of quantum
vacuum with fluctuation fields, the most known of which is the zero-point field (ZPF).
The relevant specific energy (per unit volume) depends on the truncation w, of the
power spectral density of the ZPF. Even if we take the minimum value for w, i.e. the
Compton, or spin, angular frequency w ., the ZPF energy density would be so high that
the Universe would be closed in few meters, according to general relativity. There are
two possibilities to overcome this drawback. The first one is that proposed by
Winterberg but, in our opinion, his remedy is worse than the original evil, since
runaways occur. The second possibility is that proposed by us[12], i.e. to change the
gravitational theory taking the gravitational field proportional to the spatial gradient
of ZPF.

The most recent paper on the subject of negative masses is that of Pollard and
Dunning-Davies [3] who confirmed and clarified other queer aspects emphasized by
previous authors, as the negative temperatures implied by a gas of negative-mass par-
ticles [1], and that a negative-mass gas supports tensions [5] rather than pressures (in
spite of the collisions of the molecules on the walls). Pollard and Dunning- Davies [3]
also point out that a modification has to be made to the principle of least action to
account for negative masses. They conclude that negative masses can only exist at
negative temperature, and must be adiabatically separated from positive masses.

Not even this last condition is sufficient to prevent the existence of runaways if
self-reaction is taken into account as done in sect. 2. Our conclusion is therefore the
final step of the previous restrictions, thus excluding the possibility of existence of
negative masses (if, as usual, the masses are defined over a field with positive units.
For an exception, see Santilli [13]). In particular, Winterberg’s Planckions are excluded
even if the fields responsible for their mutual actions have an extremely short range. In
fact the self-reaction due to the internals fields (necessary to keep together the
different parts of a Planckion that cannot be point-like otherwise it would be
collisionless and therefore as non-existent) brings about a self-acceleration. Moreover,
the Planckions must possess electric charges, otherwise it would be impossible to
explain the arising of electric charges, hence of long-range interactions, if the
Planckions possess no electric charge.

Concluding, self-reaction leads to the final virdict against the possibility of
existence of negative masses that would lead to a catastrophic world.
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