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5.1. Introduction

In a lecture in April 1970 Dirac talked about the early days of quantum
mechanics (Dirac, 1972). Among other topics he discussed
noncommutative algebra, and added

The question arises whether the noncommutation is really the main new
idea of quantum mechanics. Previously I always thought it was but recently I
have begun to doubt it and to think that maybe from the physical point of view,
the noncommutation is not the only important idea and there is perhaps some
deeper idea, some deeper change in our ordinary concepts which is brought
about by quantum mechanics.

He then expanded on this subject and concluded

So if one asks what is the main feature of quantum mechanics, I feel inclined
now to say that it is not noncommutative algebra. It is the existence of
probability amplitudes which underlie all atomic processes. Now a probability
amplitude is related to experiment but only partially. The square of its
modulus is something that we can observe. That is the probability which the
experimental people get. But besides that there is a phase, a number of
modulus unity which can modify without affecting the square of the modulus.
And this phase is all important because it is the source of all interference
phenomena but its physical significance is obscure. So the real genius of
Heisenberg and Schrddinger, you might say, was to discover the existence of
probability amplitudes containing this phase quantity which is very well
hidden in nature and it is because it was so well hidden that people hadn’t
thought of quantum mechanics much earlier.

One may or may not agree with Dirac on the question of which was more
important: the introduction of an amplitude with a phase or that of
noncommutative algebra, but there is no doubt that both are revolutionary
developments of profound significance in the physicists’ description of
nature.
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Classical physics, that is the physics before 1925, used exclusively real
quantities. This was true for mechanics, thermodynamics, electrodynamics
—the whole of classical physics. To be sure, complex numbers were used in
many places. For example, in solving a linear alternating current problem
complex numbers were used. But after a solution had been found, one
always took the real or imaginary part of the solution in order to obtain the
true physical answer. So the use of complex numbers was as a
computational aid, i.e. the physics was conceptually in terms of real
numbers.

With matrix mechanics and wave mechanics, however, the situation
dramatically changed. Complex numbers became a conceptual element of
the very foundation of physics: the fundamental equations of matrix
mechanics and of wave mechanics:

pq—qp= —ih (1.1)
.. O

_—= 1.

ih at Hy (1.2)

both explicitly contain the imaginary unit i= \/ — 1. Tt is to be emphasized
that the very meaning of these equations would be totally destroyed if one
tries to get rid of i by writing (1.1) and (1.2) in terms of real and imaginary
parts.

5.2. Complex numbers in matrix and wave mechanics

The following is a brief history of the entry of complex numbers in matrix
mechanics and in wave mechanics.

Take matrix mechanics first. In the pioneering paper of Heisenberg
(1925) a comparison was made between the Fourier transform of a
dynamical quantity (which depends on one state and one Fourier
multiplicity) and its ‘quantum theoretical’ correspondence (which depends
upon two states). In this process Heisenberg very naturally was
conceptually discussing complex Fourier amplitudes. In the subsequent
two-man paper (Born and Jordan, 1925), (1.1) explicitly appeared for the
first time in history. That was also the first time that the imaginary i entered
physics in a fundamental way. A little later, in Dirac’s first paper on
quantum mechanics (Dirac, 1925), (1.1) again appeared, together with

4=[g.H]=(gH — Hq)/(ih) (2.1)
which also explicitly contains i. These developments implied that complex
numbers play an essential role in matrix mechanics. But there seemed to be
little appreciation at the time that this was a major new development in
physics — perhaps because matrix mechanics was so new and Fourier
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analysis so natural that the full implications of the entry of complex
numbers was obscured by the great revolution that was taking place.

Now we turn to wave mechanics which was created*® in a historical series
of six papers (Schrodinger, 1926a—f) all written within the first six months
of 1926 by Erwin Schrédinger. In the first five of these Schrodinger had in
mind the factorization of his wave function into a real stationary function
of x and a sinusoidal function of time (Schrédinger, 1926¢)7.

That Schrodinger did this was not surprising, since he was thinking of a
standing wave description of the electron, very much in analogy with a
standing electromagnetic wave or a water wave. Such waves do have
phases, but nevertheless they are described by real functions of space-time.
In Schrodinger (1926¢) for example, there appeared a footnote to the
equation .

Yp=e"""2H (x) e (2.2)
which reads ‘1 means \/ — 1. On the right-hand side the real part is to be
taken, as usual.” [my italics], revealing his general attitude on this matter,
which was the same as in the usual linear circuit theory : y may be complex,
but one always takes the real part in the end.

Of course, in his search for the relationship between matrix mechanics
and wave mechanics Schrédinger unavoidably encountered i= \/ —1, as
for example in equation (20) Schrodinger (1926¢). Whether this fact
perturbed him we shall probably never know. But he must have been
disturbed when he involved himself with a discussion of quadratic forms
such as (3 /0t) (which he did briefly in Schrodinger (1926¢)) or Yy (Which
he did sometime before June 6, 1926, see below).

On May 27, 1926, H. A. Lorentz, then 73 years old, wrote a long letter to
Schrodinger thanking the latter for having sent him the proof sheets of
three articles and raising a lot of questions, some quite general, others very
specific, about wave mechanics. Two of these questions are relevant to our
present discussion: (a) how to interpret the { function for two or more
particles; (b) Lorentz’s opinion that ‘the true “equations of motion™ . ..
[should not] contain E at all, but contain time derivatives instead.’
Schrodinger answered on June 6 in an equally long letter of eight points.
The first two points addressed the two questions of Lorentz’s mentioned
above.

About (a), Schrédinger said that he had abandoned the expression
Y(0y/dt) of his earlier manuscript (Schrédinger, 1926f), and was now

* Pais (1986) quotes Weyl as saying ‘Schrodinger did his great work during a late erotic
outburst in his life’,
T See remark in parentheses following equation (35).
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focussing on iy for the electric charge density in real space. He then
continued : ‘What is unpleasant here, and indeed directly to be objected to,
is the use of complex numbers. i is surely fundamentally a real function.’
There followed an involved suggestion of how to generate a complex
from its real part ¥,, a suggestion clearly not quite satisfactory to

Schrodineer himself

Lt LYY ALLIRARV WAL .

About (b), Schrodinger wrote down

—hiy=E%) (2.3)
and then eliminated E by using Hy= Ey to obtain
—hiy=H?%). 2.4)

He added ‘This might well be the general wave equation which no longer
contains the integration constant E, but contains time derivatives instead.’
He continued to think about this matter, and five days later, on June 11, in
writing to Planck he said ‘By the way, during the last few days another
heavy stone has been rolled away from my heart ...I had considerable
anxiety over it ... But it all resolved itself with unheard of simplicity and
unheard of beauty.” What was this resolution? It was (2.4) above.

Why did Schrédinger not write down simply the correct time dependent
equation (1.2) rather than the more complicated (2.4)? He certainly knew
the simpler equation but chose to go to the more complicated second order
equation®*. Why? I suggest the answer 1s as follows.

Schrodinger did not want his wave equation to contain 1, so in a way he
eliminated it by going to the fourth order equation (2.4), utilizing i’= —1.
That he tried to avoid i was quite natural since he had started on wave
mechanics in Schrédinger (1926a) by writing down the real Hamilton—

Jacobi equation
d
H (q, —S) =E,
0q

S=Klog .
His  up to this point was real and time independent. Later in §3 of
Schrodinger (1926a) he wrote ‘It is, of course, strongly suggested that we
should try to connect the function y with some vibration process in the
atom...". Alas this was not a simple process, because Schrédinger had to

together with

* In all five of Schrédinger’s papers written before June 11, 1926 (Schrédinger, 1926a—¢),
(1.2) never appeared. Yet one finds such equations as (2.2), which implies that he
knew iif, = Hy,. The confusing discussion in his June 6 letter to Lorentz about the
real part ¥, of ¥ is very revealing in that it shows how Schrédinger was struggling to
eliminate/define the imaginary part.
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struggle with the question of what frequency to use for this vibration. The
subsequent evolution of his thinking on this question is a very interesting
topic, but is not the subject we are considering here. What is relevant to us
now is the fact that Schrodinger had started his conceptualization of wave
mechanics by envisaging a description of a vibration in terms of a real
function of space-time. Later when he superposed ’s he again meant to
add real y’s, each of which depends on time sinusoidally.

To return to Schrodinger’s letter of June 11 to Planck, he further
emphasized that in (2.4) one may ‘let the potential energy be an explicit
function of the time.” This turned out to be incorrect and Schrodinger
realized this in the next ten days, during which he wrote Schrodinger
(19261) which was received by the publisher on June 23. It was in this paper
that the concept was first stated that y is a complex function of space-time
and satisfies the complex time evolution equation (1.2) which Schrodinger
called the true* wave equation, in contrast to Hy = Eys which he called the
vibration or amplitude equation.

I should emphasize that I do not infer from the chronology outlined
above that Schrédinger’s discovery in Schrodinger (1926f1), that i should
be complex, was started by Lorentz’s letter of May 27, 1926, to him. That
may be the case, but it also could be that after writing Schrodinger (1926d),
which was on time independent perturbation theory, Schrodinger began to
work on a perturbation theory where the perturbation is time dependent.
He would then have to study the time evolution of the wave function i, and
Lorentz’s letter may have arrived in the midst of such a study. What one
can be certain is that between June 11 and June 23 Schrédinger was finally
convinced that i is complex.

A few days after Schrodinger (1926f) was submitted Born submitted the
first of his two historic papers on the statistical interpretation of the wave
function (Born, 1926a, b). It is interesting to notice that in the first of these
two Born used a real wave function,

sinz—nz
A

for the incoming wave and another real wave function
sin k,,,,..(ax + By +yz + 6)

for the scattered wave. Because everything was real, Born did not use
‘absolute square’ but only ‘square’ in the famous footnote (added to the
first paper in proof) which Pais referred to as follows (Pais, 1986): ‘that

* Schrodinger used eigentlich, which I translate as true. Elsewhere it has been translated
as real, which is very confusing in the present context.
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great novelty, the correct transition probability concept, entered physics by
way of a footnote’. It was only in the second paper that Born used complex
numbers for the incoming and outgoing waves.

5.3. Complex numbers in Weyl’s gauge theory

We have traced above the entrv of complex numbers into fundamental

asls aavi y vvllll—llv‘l Aves ANd

physics during the period 1925-6. In fact, several years before that,
Schrodinger (1922) had published a most interesting paper entitled ‘On a
remarkable property of the quantum orbit of one electron’, in which he had
already mentioned the possibility of introducing an imaginary factor

y= —ih (3.1)
into Weyl’s 1918 gauge theory. He started with Weyl’s ‘world geometry’,
ie. Weyl’s 1918 gauge theory of electromagnetism, summarizing Weyl’s
idea in a Streckenfaktor:

exp[—%f(th—A-dx)J, (3.2)

and went on to remark that for a hydrogen atom where 4=0, the
expression in the exponential is equal to

where 7 is the period. Fora Bohr

q

=

o

-
1E 2

=

H
7]

to —y~!nh, an integral multiple of y~'h. chrodmger called thls result
remarkable and said he could not believe that it was without deep physical
significance.

At the end of the paper Schrodinger mentioned two possible values for y,
y=e?/c, a real number, or y= —ih, i.e. (3.1) above. For the latter case, he
remarked, the factor (3.2) becomes unity.

In his great papers of 1926 which created wave mechanics Schrodinger
did not refer to this 1922 paper. But Raman and Forman (1969) in their
historical research argued that this 1922 paper had in fact played an
important role in ‘Why was it Schrodinger who developed de Broglie’s
ideas? Their thesis was later confirmed by Hanle (1977, 1979; see also
Wessels, 1977), who found the following passage in a letter dated
November 3, 1925 from Schrodinger to Einstein:

The de Broglie interpretation of the quantum rules seems to me to be related

in some ways to my note in the Zs. f. Phys. 12, 13, 1922, where a remarkable

property of the Weyl ‘gauge factor’ exp[ — | ¢ dx] along each quasi-period is

shown. The mathematical situation is, as far as I can see, the same, only from
me much more formal, less elegant and not really shown generally. Naturally
de Broglie’s consideration in the framework of his large theory is altogether of
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far greater value than my single statement, which I did not know what to make
of at first.

Thirteen days later, on November 16, 1925, Schrodinger wrote to Lande
(Raman and Forman, 1969):

Recently I have been deeply involved with Louis de Broglie’s ingenious
lﬂeSIS ll sex lfd.Ul"LllHd.l"lly blimlﬂatiﬂg out DUDCLHCleSS some Ul ]l lb VCIy ﬂd.ILl to
swallow. I have vainly attempted to make myself a picture of the phase wave of
an electron in an elliptical orbit. The ‘rays’ are almost certainly neighboring
Kepler ellipses of equal energy. That, however, gives horrible ‘caustics’ or the
like as the wave front. At the same time, the length of the wave ought to be
equal to [that of the orbit traced out by the electron in] one Zeeman or Stark
cycle!
Schrodinger was by then evidently well on his way to the first great paper
on wave mechanics which he submitted on January 27, 1926 (Schrodinger,
1926a)!

The Raman-Forman—Hanle thesis that Schrodinger’s 1922 paper played
an essential role in the creation of wave mechanics is clearly correct. We

illustrate this fact by an arrow in Fig. 5.1.

Fig.5.1. Flow of ideas relating to complex phases and gauge fields. The importance
of the 1922 paper of Schrédinger was discovered by Raman and Forman (1969) and
Hanle (1977, 1979).
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Why then did Schrédinger not refer to his own 1922 paper in 1926? The
reason is probably as follows: the 1922 paper discussed a factor (3.2) above,
with which (3.1) becomes

exp [ei jA“ dx“/h] (3.3)

while the 1926 papers were related to de Broglie’s idea which, for
comparison, could be put in the form of a factor

exp[i f p dx/h]- (3.4)

The two are similar but not the same, and Schrodinger recognized that the
relevant one to start wave mechanics from was (3.4) and not (3.3).

While Schrodinger was busy with developing wave mechanics, his 1922
paper caught the attentions of F. London who wrote to Schrodinger a very
interesting letter reprinted in Raman and Forman (1969). We attach as an
appendix a translation of this letter, which according to Raman and
Forman, was written around December 10, 1926.

London developed further this thinking in a paper entitled ‘Quantum
mechanical meaning of the theory of Weyl’ (London, 1927a; see also
London, 1927b). A little earlier, Fock had published a paper which
discussed invariance of wave equations (Fock, 1927). Both are somewhat
confusing* as is natural in those early days of wave mechanics, but both
contain the right idea that, in today’s notation, electromagnetism enters in
wave mechanics with an operator

(0,—ieA,)
on ¥, which is the heart of the gauge principle (see Fig. 1). The definitive

discussion of electromagnetism as a gauge theory came later, in an
important paper (Weyl, 1929; see also Yang, 1986).

5.4. Modern consequences

The importance of the introduction of complex amplitudes with phases into
physicists’ description of nature was not fully appreciated until the 1970s
when two developments took place: (1) all interactions were found to be
some form of gauge field; and (2) gauge fields were found to be related to the
mathematical concept of fibre bundles (Wu and Yang, 1975), each fibre being
a complex phase or a more general phase. With these developments there

* In my article in Ann. N.Y. Sci. 294, 86 (1977) I had said that London’s paper pointed
out the similarity between Fock’s work and the 1918 Weyl paper. This is wrong. I had

misread the meaning of the footnote on p. 111 of W. Pauli, Handbuch der Physik Vol.
24, Part 1 (1933).
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arose a basic tenet, of today’s physics: all fundamental forces are phase
fields (Yang, 1983). Thus the almost casual introduction in 1922 by
Schrodinger of the imaginary unit i into (3.1) above has flowered into deep
concepts that lie at the very foundation of our understanding of the
physical world.

In 1975 Wu and I drew up a ‘dictionary’, reproduced here as Table 1,
identifying physicists’ terminology for gauge fields with mathematicians’
terminology for fibre bundles (Wu and Yang, 1975).

There is in this ‘dictionary’ a blank space with a question mark because
at that time the mathematicians had not studied the concept that
corresponds to physicists’ ‘sources’, i.e. density—current four-vector, a
natural and fundamental concept in Maxwell’s theory of
electromagnetism. In the language of the mathematicians, this concept
would have been written as

*% f=1. (4.1)

A sourceless case would satisfy
*0% £=0. 4.2)
The mathematicians have now studied (4.2) and the results have helped to

resolve some deep and long standing problems in topology and differential
geometry, providing a modern example, so abundant in past centuries but

Table 5.1. Reproduction of ‘dictionary’ comparing terminologies in gauge
field theory and fibre bundle theory

Gauge field terminology Bundle terminology

gauge (or global gauge) principal coordinate bundle

gauge type principal fibre bundle

gauge potential b% connection on a principal fibre bundle
St transition function

phase factor @,p parallel displacement

field strength ﬁ‘w curvature

source® JX ?

electromagnetism connection on a U,(1) bundle

isotopic spin gauge field connection on a SU, bundle

Dirac’s monopole quantization classification of U, (1) bundle according

to first Chern class
electromagnetism without monopole connection on a trivial U,(1) bundle
electromagnetism with monopole connection on a nontrivial U,(1) bundle

“ i.e. electric source; this is the generalization of the concept of electric charges
and currents.
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rare now, of how physics could supply powerful insights for the advance of
mathematics (Freed and Uhlenbeck, 1984; Lawson, 1985).

5.5. Appendix

A letter from F. Londo to E. Schrodinger*
’T‘...-....n .-. ad dand 1 Loy Davnd T M WAoo
1ldlldlailCal 1110 D 5 UY Irivi. 1. . Ilvlv B

Dear Professor,

I must have a serious word with you today. Are you acquainted with a
certain Mr. Schrodinger, who in the year 1922 (Zeits. fur Phys., 12) described a
‘bemerkenswerte Eigenschaft der Quantenbahnen’? Are you acquainted with
this man? What! You affirm that you know him very well, that you were even
present when he did this work and that you were his accomplice in it? That is
absolutely unheard of. So you already know for four years that in the
continuous space-time in which atomic processes have to be studied, no rulers
and clocks can be used to define an Einstien—Riemann metrical relationship
(Masszausammenhang), once one has to see whether the general metrical
principles which have been expressed by Weyl’s theory of distance transference
(Streckeniibertragung) is perhaps helpful. And you have for four years very well
noticed that they are even extremely helpful. Namely while usually nonsense
emerges by using Weyl’s distance transference [Einstein’s objection (Yang,
1986), Weyl’s very poor excuse (Weyl, 1968) with ‘adjustment’ (Einstellung)]
you have shown that on the discrete physical orbits the scale unit (Eicheinheir)
(with y =2ri/h) can be reproduced for spatially closed paths; and in fact you
observed at that time for the nth orbit the scale unit swells and shrinks
(anschwillt und zusammenschrumpft) exactly n times, just like the standing wave
which describes the location of the charge. So you have shown that the theory
of Weyl is only reasonable —i.¢., it leads to a unique measure-determination —
when one combines this theory with the quantum theory. Actually there is
nothing else one can do, if the entire atomic world is a continuous space-time
without any fixed point for identification. You knew this and said nothing and
made no statement about it. This kind of thing has never happened before. You
wrote very modestly in your paper (p.14): You did not — to confess
immediately — come very far in the discussion of the possible meaning of this
fact. But in this paper you not only have put the hopeless confusion of the
Weyl theory to an end, but also even had the resonance character of the
quantum postulate in your hands long before de Broglie, and also thought
about whether you should take y=h/2zi or e*/c! (p.23) — Will you now
immediately confess that, like a priest, you kept secret the truth which you held
in your hands, and give notice to your contemporaries of all you know! The

* According to Raman and Forman, who reprinted this letter in their article in Historical
Studies in the Physical Sciences, Vol. 1, pp.291-314, the letter was written around
December 10, 1926,
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most important thing is yet to be done, that remark made in 1922 being a
theorem of the old quantum mechanics. One can with certainty expect that it
will show its whole significance when it is brought into meaningful connection
with wave mechanics. (I have not done this yet.) I think that it is your duty,
after you have mystified the world in such a manner, now to clarify everything.

Now, that is enough. Thank you very much for spending so much time on
my stupid letter*. For the moment [ have discontinued my study on this
matter. I think on the whole the Kaluza—Klein Space Theory has to be
considered as a set-back (Riickschritt) since the existence of the beautiful Weyl
Space Theory, and I would like to look at this more closely. I have different
clues (Anhalt) which show that it will not be difficult to make Weyl’s and
Kaluza’s theory consistent with each other (plot for yourself for every world-
point the scale unit (Eicheinheit) as the 5th dimension, one immediately sees a
lot of beautiful things!) I am eagerly looking forward to reading your
manuscriptt (until now it is still not here) especially after the hints given by
Fues. Even if it would be just for one day, I would very, very much like to be
able to see it.

By the way, the Rockefeller is granted; the telegram arrived yesterday. I am
very happy that it is now certain that I may work with you.

I wish you a good journey. I am looking forward to your return.

With hearty greetings, I am

Yours very faithfully

Fritz London
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