Subject: The 'mysterious time' of Bill Unruh, 1988
Date: Thu, 04 Mar 2004 15:36:18 +0200 From: Dimi Chakalov <dimi@chakalov.net> To: William G Unruh <unruh@physics.ubc.ca> Dear Professor Unruh, In my email of Tue, 18 Feb 2003 11:42:52 +0200, http://members.aon.at/chakalov/Kuchar.html#space I mentioned your 'mysterious time' introduced in 1988, http://members.aon.at/chakalov/Pullin.html#Unruh May I ask you to comment on a recent research paper by Paul Davies [Ref. 1], which elaborates on Peres' quantum clock of 1980. It seems to me that the issue has crucial cosmological implications: please see the nonlinear matching problem in [Ref. 2]. Neil Turok and Paul Seinhardt are "encouraged by the simplicity and uniqueness of the matching rule in linearised gravity" [Ibid.], but have not addressed the problem known since 1917, http://members.aon.at/chakalov/Thiemann.html#1 I've mentioned briefly the conflict between the equivalence principle and QM at http://members.aon.at/chakalov/Chrusciel.html#note It boils down to our understanding of the "point", literally speaking, at which we define the equivalence principle, and obliterate your 'mysterious time', which I call 'global mode of spacetime', http://members.aon.at/chakalov/Bell.html I think you 'hit the jackpot' by introducing your socalled mysterious time: an explicit (but unmeasureable) time [Ref. 3]. To avoid criticism along the lines of the old Tanzanian saying, http://members.aon.at/chakalov/Terno.html#Tanzanian I suggested the notion of 'global mode of spacetime'. It is explicit but unmeasureable by an inanimate physical clock, http://members.aon.at/chakalov/Beauregard.html#note http://members.aon.at/chakalov/McGuire.html#note Your comments will be highly appreciated. Thank you, once more, for your email of 1999 regarding negative energy densities, http://members.aon.at/chakalov/Helfer.html Sincerely yours, Dimi Chakalov
References [Ref. 1] Paul
Davies, Quantum mechanics and the equivalence principle, quantph/0403027
v1, Wed, 3 Mar 2004 04:26:27 GMT,
"To investigate this scenario, it is necessary to have
a clear definition of the time of flight of the quantum particle. Two problems
then present themselves. First, in the case of narrow wave packets one
may follow, say, the peak or the median position of the packet as it moves.
But this strategy will not work for spreadout energy
"I have restricted attention to the socalled weak equivalence
principle. One might also enquire into the status of the strong or Einstein
equivalence principles in quantum mechanics. Einstein made the postulate
that all of physics in a uniform gravitational field should be locally
equivalent to the physics in a uniformly accelerated frame.
"Under the transformation (4.1), the eigenfunctions (4.4)
do not transform into (4.3). The equation of motion may transform correctly,
but the energy eigenstates do not. Rather, the Airy functions will be complicated
linear combinations of plane wave solutions (4.4) and their complex conjugates.
(The transformation of plane wave solutions into accelerated reference
frames is a wellstudied problem; see, for example,
Birrell & Davies (1982), section 4.5.) This would not matter if the
results of the analysis were linear in the wave function. That is indeed
the case for the behaviour of wave packets which are made up of linear
combinations of plane waves. But it is not the case for a measurement of
the transit time, at least when such a measurement is made using the Peres
clock prescription considered here. That is because the time interval depends
on a measurement of the phase change, and the sum of the phases of a superposition
of waves is generally not the same
[Ref. 2] Neil Turok, Paul J. Seinhardt,
Beyond Inflation: A Cyclic Universe Scenario, hepth/0403020 v1. Talk given
at the Nobel Symposium 'String Theory and Cosmology', 2003,
"The key challenge facing the scenario is that of passing
through the cosmic singularity at t=0.
"Are the cycles eternally continuing? A naive (and perhaps
correct) argument is as follows. In any particular region of the cyclic
universe, a highly improbable quantum jump could always occur to end the
cycling. However, with overwhelming probability, the cycling would continue
in most of the universe. The argument is similar to that usually invoked
to justify eternal inflation.
"The new scenario is incomplete at present. We do not yet have a full prescription for nonlinear matching across t = 0. Nevertheless, we are encouraged by the simplicity and uniqueness of the matching rule in linearised gravity, and by the simplifications wrought by ultralocality. We are led to conjecture that there exists a consistent analytic continuation in nonlinear gravity generalising our linearised treatment. "If the nonlinear matching problem is solved, and cyclic
solutions such as we discuss are allowed, an entirely new approach to the
basic problems of cosmology is opened. The state of the universe may be
determined from the laws of physics in much the same way as is the equilibrium
state in statistical mechanics. There would be neither a need for a special
initial condition, nor one for strong anthropic
[Ref. 3] W.G. Unruh, Professor
Research Interests * applying quantum mechanics to gravity and the
role of time in
==== Subject: Re: Request for preprint
P.S. The reason why I need your paper on the explicit (but unmeasureable) time (why not spacetime?) is explained at http://Goddoesnotplaydice.net/Kawasaki.html#silence Best  Dimi On Tue, 15 Jun 2004 23:50:45 +0300, Dimi Chakalov wrote:
==== Subject: The explicit (but unmeasureable) time
Dear Bill, I mentioned some ideas about the socalled dark energy and LIGO at http://www.Goddoesnotplaydice.net/Vitale.html#hint Bottom line as the alleged virtual/global component of gravity, http://www.Goddoesnotplaydice.net/points.html#GQD which refers to your explicit (but unmeasureable) time and Karel's hidden unmoved mover (Karel Kuchar, "The Problem of Time In Quantum Geometrodynamics", in "The Arguments of Time", ed. by Jeremy Butterfield, Oxford University Press, Oxford, 1999, p. 193). Both are missing in the current GR, and are completely "dark". If you wish to read about the implications for the Advanced LIGO, click on the first link above. I presume you hold different opinion on the LIGO mafia, so please don't feel obliged to reply. Kindest regards, Dimi
