SSubject: Re: Cramer's TI
Date: Fri, 24 Sep 2004 01:58:46 +0300 From: Dimi Chakalov <dimi@chakalov.net> To: Maximilian Schlosshauer <maxl@u.washington.edu> CC: afine@u.washington.edu, cramer@phys.washington.edu, stapp@thsrv.lbl.gov, adler@ias.edu Dear Dr. Schlosshauer, Thank you for your kind reply. > If you have specific questions for Cramer, maybe you
could send I sure did, http://Goddoesnotplaydice.net/Cramer.html Let me share with you my comments on your two recent papers, and try to explain why I like Cramer's Transactional Interpretation of QM. I believe it is still a "shut up and calculate" interpretation of QM, but it reveals much more from the quantum realm than W. Zurek's speculations [Ref. 1]. It seems to me that Cramer's TI does not suffer from the notorious tails problem [Ref. 1, p. 30): "in any region in space and at any time t > 0, the wave function will remain nonzero if it has been nonzero at t = 0 (before the collapse), and thus there will be always a part of the system that is not "here"." Also, it does not play with the human brain, and hence does not suffer from the genuine Catch 22 paradox that is imbedded in other interpretations of QM. What I mean by 'Catch 22 paradox' is that the human brain is part of the environment (or Feynman's 'the rest of the universe'), "where the perception of denumerability and mutual exclusiveness of events must be accounted for" [Ref. 1]. All other interpretations of QM bypass this genuine paradox, as if the human brain could be shielded from all ambiguities in Process II or the Schrödinger dynamics alone [Ref. 2]. Hence I think Cramer's TI does not suffer from the basis problem either [Ref. 2]. In the context of the "Copenhagen hegemony" [Ref. 3], for example, *any* macroscopic cat states of our neurons would be lethal (hence the importance of the tails problem). If you measure a quantum system, the very first thing that will happen is that your brain and the quantum system will be entangled, and *nothing* would have any definite state whatsoever, 'the rest of the universe' included. Hence your brain will break down and could never recall that there is such thing as Process I or 'projection postulate', not to mention the Born rule [Ref. 3]. You'll be damn dead. Hence you utterly need some "pointlike" state to initiate the measurement, but such a welldefined "pointlike" state can be miraculously obtained only *after* the measurement. Hence the Catch 22 paradox. I can't see how Cramer's TI would actually *derive* the Born rule, however [Ref. 3]. Perhaps John Cramer would elaborate. To sum up, I agree with Henry Stapp that "the basis problem is *the* problem that any interpretation of quantum theory must resolve in some way" [Ref. 2]. I believe the basis problem can be solved only by something that pertains to 'the rest of the universe', which is why I like Cramer's TI and speculated on the Born rule from his perspective, http://Goddoesnotplaydice.net/Krasnikov.html#Born The issue is far from clear, of course, http://Goddoesnotplaydice.net/energy.html#gravity http://Goddoesnotplaydice.net/Barbara.html#imaginary http://Goddoesnotplaydice.net/Knuth.html#note Best regards, Dimi Chakalov
References [Ref. 1] Maximilian Schlosshauer, Decoherence,
the Measurement Problem, and Interpretations of Quantum Mechanics,
quantph/0312059
v3
[Ref. 2] H.P. Stapp, The basis problem
in manyworlds theories,
"(O)ne chooses a single set of vectors that can be used
to represent a state and thus one chooses a single *preferred* way of representing
a state as the sum of vectors in the Hilbert space."
"But the entire construction depends crucially on the
idea that a particular welldefined set of preferred basis states is specified
by the evolving noncollapsing quantum state of the universe. "The values associated with the preferred basis vectors
are supposed to be "possessed" by the systems, or to exist within nature.
"Indeed, the basis problem is *the* problem that any interpretation
of quantum theory must resolve in some way. Thus the central idea of the
Copenhagen interpretation was to imbed the quantum system in a larger system
that specifies the preferred basis by bringing in "measuring devices" that
are set in place by a classically conceived process. In von Neumann’s formulation
there is the infamous "Process I", which likewise lies outside the process
governed by the Schroedinger equation.
"The quantum state would be, to first order, a superposition
of a continuum of slightly differing classicaltype worlds with, in particular,
each measuring device, and also each observing brain, smeared out over
a continuum of locations, orientations, and detailed
"This fact poses a problem in principle for any deduction
of probabilities from the Schroedinger dynamics alone: how can a specific
set discrete orthonormal subspaces be specified by the continuous action
of the Schroedinger equation on a continuously smeared out amorphous state?"
[Ref. 3] Maximilian Schlosshauer, Arthur Fine, On Zurek’s derivation of the Born rule, quantph/0312058 v3 "Decoherence provides a mechanism, termed environmentinduced
superselection, in which the interaction of S with E singles out a preferred
basis in HS [20]; however, a fundamental derivation of the
"We cannot derive probabilities from a theory that does
not already contain some probabilistic concept; at some stage, we need
to "put probabilities in to get probabilities out". (...) Moreover, any
derivation of quantum probabilities and Born’s rule will require some set
of assumptions that put probabilities into the theory. In the era of the
"Copenhagen hegemony", to use Jim Cushing’s apt phrase, probabilities were
put in by positing an "uncontrollable disturbance" between object and apparatus
leading to a brute quantum "individuality" that was taken not to be capable
of further analysis."
