
5.8  The Field
Equations
 

You told us how
an almost churchlike atmosphere is pervading your desolate house now. And
 justifiably so, for unusual divine powers are at work in there.
                                                                                                Besso
to Einstein, 30 Oct 1915

 
The basis of Einstein's general theory of relativity
is the audacious idea that not only do the
 metrical relations of spacetime
deviate from perfect Euclidean flatness, but that the metric itself
 is a
dynamical object. In every other field theory the equations describe the
behavior of a
 physical field, such as the electric or magnetic field, within
a constant and immutable arena of
 space and time, but the field equations of
general relativity describe the behavior of space and
 time themselves. The
spacetime metric is the field. This fact is so familiar that we may be
 inclined to simply accept it without reflecting on how ambitious it is, and
how miraculous it is
 that such a theory is even possible, not to mention
(somewhat) comprehensible. Spacetime plays
 a dual role in this theory,
because it constitutes both the dynamical object and the context
within
 which the dynamics are defined. This self-referential aspect gives
general relativity certain
 characteristics different from any other field
theory. For example, in other theories we formulate
 a Cauchy initial value
problem by specifying the condition of the field everywhere at a given
 instant, and then use the field equations to determine the future evolution
of the field. In
 contrast, because of the inherent self-referential quality
of the metrical field, we are not free to
 specify arbitrary initial
conditions, but only conditions that already satisfy certain self-
consistency
requirements (a system of differential relations called the Bianchi
identities)
 imposed by the field equations themselves.
 
The
self-referential quality of the metric field equations also manifests itself
in their non-
linearity. Under the laws of general relativity, every form of
stress-energy gravitates, including
 gravitation itself. This is really
unavoidable for a theory in which the metrical relations between
 entities
determine the "positions" of those entities, and those positions in
turn influence the
 metric. This non-linearity raises both practical and
theoretical issues. From a practical
 standpoint, it ensures that exact
analytical solutions will be very difficult to determine. More
 importantly,
from a conceptual standpoint, non-linearity ensures that the field cannot in
general
 be uniquely defined by the distribution of material objects, because
variations in the field itself
 can serve as "objects".
 
Furthermore,
after eschewing the comfortable but naive principle of inertia as a suitable
 foundation for physics, Einstein concluded that "in the general theory
of relativity, space and
 time cannot be defined in such a way that
differences of the spatial coordinates can be directly
 measured by the unit
measuring rod, or differences in the time coordinate by a standard
 clock...this requirement ... takes away from space and time the last remnant
of physical
 objectivity". It seems that we're completely at sea, unable
to even begin to formulate a definite
 solution, and lacking any definite
system of reference for defining even the most rudimentary
 quantities. It's
not obvious how a viable physical theory could emerge from such an austere
level
 of abstraction.
 
These
difficulties no doubt explain why Einstein's route to the field equations in
the years 1907
 to 1915 was so convoluted, with so much confusion and
backtracking. One of the principles that
 heuristically guided his search was
what he called the principle of general covariance. This was
 understood to
mean that the laws of physics ought to be expressible in the form of tensor
 equations, because such equations automatically hold with respect to any
system of curvilinear
 coordinates (within a given diffeomorphism class, as
discussed in Section 9.2). He abandoned
 this principle at one stage,
believing that he and Grossmann had proven it could not be made
 consistent
with the Poisson equation of Newtonian gravitation, but subsequently realized
the
 invalidity of their arguments, and re-embraced general covariance as a
fundamental principle.
 
It
strikes many people as ironic that Einstein found the principle of general
covariance to be so
 compelling, because, strictly speaking, it's possible to
express almost any physical law,



 including Newton's laws, in generally
covariant form (i.e., as tensor equations). This was not
 clear when Einstein
first developed general relativity, but it was pointed out in one of the very
 first published critiques of Einstein's 1916 paper, and immediately
acknowledged by Einstein.
 It's worth remembering that the generally covariant
formalism had been developed only in 1901
 by Ricci and Levi-Civita, and the
first real use of it in physics was Einstein's formulation of
 general
relativity. This historical accident made it natural for people (including
Einstein, at first)
 to imagine that general relativity is distinguished from
other theories by its general covariance,
 whereas in fact general covariance
was only a new mathematical formalism, and does not
 connote a distinguishing
physical attribute. For this reason, some people have been tempted to
 conclude that the requirement of general covariance is actually vacuous. In
reply to this
 criticism, Einstein clarified the real meaning (for him) of
this principle, pointing out that its
 heuristic value arises when combined
with the idea that the laws of physics should not only be
 expressible as
tensor equations, but should be expressible as simple tensor
equations. In 1918 he
 wrote "Of two theoretical systems which agree with
experience, that one is to be preferred
 which from the point of view of the
absolute differential calculus is the simplest and most
 transparent".
This is still a bit vague, but it seems that the quality which Einstein had
in mind
 was closely related to the Machian idea that the expression of the
dynamical laws of a theory
 should be symmetrical up to arbitrary continuous
transformations of the spacetime coordinates.
 Of course, the presence of any
particle of matter with a definite state of motion automatically
 breaks the
symmetry, but a particle of matter is a dynamical object of the theory. The
general
 principle that Einstein had in mind was that only dynamical objects
could be allowed to
 introduce asymmetries. This leads naturally to the
conclusion that the coefficients of the
 spacetime metric itself must be
dynamical elements of the theory, i.e., must be acted upon. With
 this
Einstein believed he had addressed what he regarded as the strongest of
Mach's criticisms of
 Newtonian spacetime, namely, the fact that Newton's
space acted on objects but was never acted
 upon by objects.
 
Let's
follow Einstein's original presentation in his famous paper "The
Foundation of the General
 Theory of Relativity", which was published
early in 1916. He notes that for empty space, far
 from any gravitating
object, we expect to have flat (i.e., Minkowskian) spacetime, which
 amounts
to requiring that Riemann's curvature tensor Rabcd vanishes.
However, in regions of
 space near gravitating matter we must clearly have
non-zero intrinsic curvature, because the
 gravitational field of an object
cannot simply be "transformed away" (to the second order) by a
 change of coordinates. Thus there is no system of coordinates with respect to
which the
 manifold is flat to the second order, which is precisely the
condition indicated by a non-
vanishing Riemann curvature tensor.
Nevertheless, even at points where the full curvature tensor
 Rabcd
is non-zero, the contracted tensor of the second rank, Rbc= gadRabcd
= Rd

bcd may vanish.
 Now, a tensor of rank four can be
contracted in six different ways (the number of ways of
 choosing two of the
four indices), and in general this gives six distinct tensors of rank two. We
 are able to single out a more or less unique contraction of the curvature
tensor only because of
 that tensor’s symmetries (described in Section 5.7),
which imply that of the six contractions of
 Rabcd, two are zero
and the other four are identical up to sign change. Specifically we have
 

 
By
convention we define the Ricci tensor Rbc as the contraction gadRabcd.
In seeking suitable
 conditions for the metric field in empty space, Einstein
observes that
 

…there is only a
minimum arbitrariness in the choice... for besides Rμν
there is no tensor of the second rank
 which is formed from the gμν
and it derivatives, contains no derivative higher than the second, and is
linear in
 these derivatives… This prompts us to require for the matter-free
gravitational field that the symmetrical tensor
 Rμν ...
shall vanish.

 
Thus,
guided by the belief that the laws of physics should be the simplest possible
tensor
 equations (to ensure general covariance), he proposes that the field
equations for the
 gravitational field in empty space should be



 

 
Noting
that Rμν takes on a
particularly simple form on the condition that we choose coordinates

 such
that  = 1, Einstein originally expressed this
in terms of the Christoffel symbols as
 

 
(In
his 1916 paper Einstein had a different sign because he defined the symbol Γa

bc
as the
 negative of the Christoffel symbol of the second kind.) He then
concludes the section with
 words that obviously gave him great satisfaction,
since he repeated essentially the same
 comments at the conclusion of the
paper:
 

These equations,
which proceed, by the method of pure mathematics, from the requirement of the
general
 theory of relativity, give us, in combination with the [geodesic]
equations of motion, to a first approximation
 Newton's law of attraction, and
to a second approximation the explanation of the motion of the perihelion of
 the planet Mercury discovered by Leverrier. These facts must, in my opinion,
be taken as a convincing proof of
 the correctness of the theory.

 
To
his friend Paul Ehrenfest in January 1916 he wrote that "for a few days
I was beside myself
 with joyous excitement", and to Fokker he said that
seeing the anomaly in Mercury's orbit
 emerge naturally from his purely
geometrical field equations "had given him palpitations of the
 heart". (These recollections are remarkably similar to the presumably
apocryphal story of
 Newton's trembling hand when he learned, in 1675, of
Picard's revised estimates of the Earth's
 size, and was thereby able to
reconcile his previous calculations of the Moon's orbit based on
 the
assumption of an inverse-square law of gravitation.)
 
The
expression Rμν = 0 represents ten distinct equations in
the ten unknown metric components
 gμν at each point in
empty spacetime (where the term "empty" signifies the absence of
matter or
 electromagnetic energy, but obviously not the absence of the
metric/gravitational field.) Since
 these equations are generally covariant,
it follows that given any single solution we can
 construct infinitely many
others simply by applying arbitrary (continuous) coordinate
 transformations.
Thus, each individual physical solution has four full degrees of freedom
which
 allow it to be expressed in different ways. In order to uniquely
determine a particular solution
 we must impose four coordinate conditions on
the gμν, but this gives us a total of fourteen
 equations
in just ten unknowns, which could not be expected to possess any non-trivial
solutions
 at all if the fourteen equations were fully independent and
arbitrary. Our only hope is if the ten
 formal conditions represented by our
basic field equations automatically satisfy four identities
 for any
values of the metric components, so that they really only impose six
independent
 conditions, which then would uniquely determine a solution when
augmented by a set of four
 arbitrary coordinate conditions.
 
It
isn't hard to guess that the four "automatic" conditions to be
satisfied by our field equations
 must be the vanishing of the covariant
derivatives (see Appendix 4), since this will guarantee
 local conservation of
any energy-momentum source term that we may place on the right side of
 the equation,
analogous to the mass density on the right side of Poisson's equation
 

 
where
we’ve chosen units so that Newton’s gravitational constant equals 1. In
tensor calculus the
 divergence generalizes to the covariant derivative, so we
expect that the covariant derivatives of



 the metrical field equations must
identically vanish. The Ricci tensor Rμν itself does not
satisfy
 this requirement, but we can create a tensor that does satisfy the
requirement with just a slight
 modification of the Ricci tensor, and without
disturbing the relation Rμν = 0 for empty space.
 Subtracting half the metric
tensor times the invariant R = gμνRμν
gives what is now called the
 Einstein Tensor
 

 
Obviously
the condition Rμν = 0 implies Gμν =
0. Conversely, if Gμν = 0 we can see from the
 mixed form
 

 
that
R must be zero, because otherwise Rμν would need to be
diagonal, with the components R/2,
 which doesn't contract to the scalar R
(except in two dimensions). Consequently, the condition
 Gμν
= 0 is equivalent to Rμν = 0 for empty space, but for
coupling with a non-zero source term
 we must use Gμν to
represent the metrical field.
 
To
represent the "source term" we will use the covariant
energy-momentum tensor Tμν, and
 regard it as the "cause" of the metric curvature (although one might also conceive of the metric
 curvature as, in some temporally symmetrical sense, "causing" the energy-momentum). Einstein
 acknowledged that the
introduction of this tensor is not justified by the relativity principle
alone,
 but it has the virtues of being closely related by analogy with the
Poisson equation from
 Newton's theory, it gives local conservation of energy
and momentum, and finally that it implies
 gravitational energy gravitates
just as does every other form of energy. On this basis we surmise
 that the
field equations coupled to the source term can be written in the form Gμν
= κTμν where
 κ is a constant which must equal
−8π (remembering that Newton's gravitational constant is 1 in
 our
units) in order for the field equations to reduce to Newton's law in the weak
field limit. Thus
 we have the complete expression of Einstein's metrical law
of general relativity
 

 
The
minus sign of the right hand side is due to our choice of gadRabcd
for the definition of the
 Ricci tensor. As noted above, this is the negative
of gacRabcd, which we could just as well have
 chosen as
the definition of the Ricci tensor, in which case the sign of the right side
of (2) would
 be positive. The choice is purely conventional.
 
It's
worth noting that although the left side of the field equations is quite pure
and almost
 uniquely determined by mathematical requirements, the right side
is a hodge-podge of
 miscellaneous "stuff". As Einstein wrote,
 

The energy
tensor can be regarded only as a provisional means of representing matter. In
reality, matter consists
 of electrically charged particles... It is only the
circumstance that we have no sufficient knowledge of the
 electromagnetic
field of concentrated charges that compels us, provisionally, to leave
undetermined in
 presenting the theory, the true form of this tensor... The
right hand side [of (2)] is a formal condensation of all
 things whose
comprehension in the sense of a field theory is still problematic. Not for a
moment... did I doubt
 that this formulation was merely a makeshift in order
to give the general principle of relativity a preliminary
 closed-form
expression. For it was essentially no more than a theory of the gravitational
field, which was
 isolated somewhat artificially from a total field of as yet
unknown structure.

 
Alas,
neither Einstein nor anyone since has been able to make further progress in
determining the



 true form of the right hand side of (2), although it is at
the heart of current efforts to reconcile
 quantum mechanics with general
relativity. At present we must be content to let Tμν
represent,
 in a vague sort of way, the energy density of the electromagnetic
field and matter.
 
A
different (but equivalent) form of the field equations can be found by
contracting (2) with gμν
 to give R − 2R = −R
= -8πT, and then substituting for R in (2) to give
 

 
which
again makes clear that the field equations for empty space are simply Rμν
= 0.
 
Incidentally,
the tensor Gμν was named for Einstein because of his
inspired use of it, not because
 he discovered it. Indeed the vanishing of the
covariant derivative (see Appendix 4) of this tensor
 had been discovered by
Aurel Voss in 1880, by Ricci in 1889, and again by Luigi Bianchi in
 1902, all
apparently independently. Bianchi had once been a student of Felix Klein, so
it's not
 surprising that Klein was able in 1918 to point out regarding the
conservation laws in Einstein's
 theory of gravitation that we need only
"make use of the most elementary formulae in the
 calculus of
variations". Recall from Section 5.7 that the Riemann curvature tensor
in terms of
 arbitrary coordinates is
 

 
At
the origin of Riemann normal coordinates this reduces to Rabcd = gad,cb
– gac,bd , because in
 such coordinates the Christoffel symbols are
all zero and we have the special symmetry gab,cd =
 gcd,ab.
Now, if we consider partial derivatives (which in these special coordinates
are equal to
 the covariant derivatives) of this tensor, we see that the
derivative of the quantity in square
 brackets still vanishes, because the
product rule implies that each term is a Christoffel symbol
 times the
derivative of a Christoffel symbol. We might also be tempted to take
advantage of the
 special symmetry gab,cd = gcd,ab , but
this is not permissible because although the two quantities
 are equal (at the
origin of Riemann normal coordinates), their derivatives are not generally
 equal. Hence when evaluating the derivatives of the Riemann tensor, even at
the origin of
 Riemann normal coordinates, we must consider all four of the
metric tensor derivatives in the
 above expression. Denoting covariant
differentiation with respect to a coordinate xm by the
 subscript
;m, we have
 

 
Noting
that partial differentiation is commutative, and the metric tensor is
symmetrical, we see
 that the sum of these three tensors vanishes at the
origin of Riemann normal coordinates, and
 therefore with respect to all coordinates.
Thus we have the Bianchi identities
 

 
Multiplying
through by gadgbc , making use of the symmetries of the
Riemann tensor, and the
 fact that the covariant derivative of the metric
tensor vanishes identically, we have
 



 
which
reduces to
 

 
Thus
we have
 

 
showing
that the "divergence" of the tensor inside the parentheses (the
Einstein tensor) vanishes
 identically.
 
One
outcome of the struggle to understand the conservation laws of the
relativistic field
 equations was Emmy Noether’s famous theorem on the
relation between symmetries and
 conservation laws. Also, Klein explored how
general relativity embodies some aspects of his
 Erlangen program.
 
A
slight (but significant) extension of the field equations was proposed by
Einstein in 1917
 based on cosmological considerations, as a means of ensuring
stability of a static closed
 universe. To accomplish this, he introduced a
linear term with the cosmological constant λ as
 follows
 

 
When
Hubble and other astronomers began to find evidence that in fact the
large-scale universe
 is expanding, and Einstein realized his ingenious
introduction of the cosmological constant had
 led him away from making such a
fantastic prediction, he called it "the biggest blunder of my
 life”.
 
It's
worth noting that Einsteinian gravity is possible only in four dimensions,
because in any
 fewer dimensions the vanishing of the Ricci tensor Rμν
implies the vanishing of the full
 Riemann tensor, which means no curvature
and therefore no gravity in empty space. Of course,
 the actual field
equations for the vacuum assert that the Einstein tensor (not the Ricci
tensor)
 vanishes, so we should consider the possibility of G being zero while
R is non-zero. We saw
 above that G = 0 implies R = 0, but that was based on
the assumption of a four-dimensional
 manifold. In general for an
n-dimensional manifold we have R − (n/2)R = G, so if n is not equal
 to
2, and if Gμν vanishes, we have G = 0 and it follows
that R = 0, and therefore Rμν must
 vanish. However, if n
= 2 it is possible for G to equal zero even though R is non-zero. Thus, in
 two dimensions, the vanishing of Gμν does not
imply the vanishing of Rμν. In this case we have
 

 
where
λ can be any constant. Multiplying through by gμν
gives
 

 
This
is the vacuum solution of Einstein's field equations in two dimensions. Oddly
enough, this
 is also the vacuum solution for the field equations in four
dimensions if λ is identified as the
 non-zero cosmological constant. Any
space of constant curvature is of this form, although a



 space of this form
need not be of constant curvature.
 
Once
the field equations have been solved and the metric coefficients have been
determined, we
 then compute the paths of objects by means of the equations of
motion. It was originally taken
 as an axiom that the equations of motion are
the geodesic equations of the manifold, but in a
 series of papers from 1927
to 1949 Einstein and others showed that if particles are treated as
 singularities in the field, then they must propagate along geodesic
paths. Therefore, it is not
 necessary to make an independent assumption about
the equations of motion. This is one of the
 most remarkable features of
Einstein's field equations, and is possible only because of the non-
linear
nature of the equations. Of course, the hypothesis that particles can be
treated as field
 singularities may seem no more intuitively obvious than the
geodesic hypothesis itself. Indeed
 Einstein himself was usually very opposed
to admitting any singularities, so it is somewhat
 ironic that he took this
approach to deriving the equations of motion. On the other hand, in 1939
 Fock
showed that the field equations imply geodesic paths for any sufficiently
small bodies with
 negligible self-gravity, not treating them as singularities
in the field. This approach also suggests
 that more massive bodies would deviate
from geodesics, and it relies on representing matter by
 the stress-energy
tensor, which Einstein always viewed as only a provisional formal expression.
 
To
appreciate the physical significance of the Ricci tensor it's important to be
aware of a relation
 between the contracted Christoffel symbol and the scale
factor of the fundamental volume
 element of the manifold. This relation is
based on the fact that if the square matrix A is the
 inverse of the
square matrix B, then the components of A can be expressed in
terms of the
 components of B by the equation Aij = (∂B/∂Bij)/B
where B is the determinant of B.
 Accordingly, since the covariant
metric tensor gμν and the contravariant metric tensor gμν
are
 matrix inverses of each other, we have
 

 
If
we multiply both sides by the partial of gμν with
respect to the coordinate xα we have
 

 
Notice
that the left hand side looks like part of a Christoffel symbol. Recall the
general form of
 these symbols
 

 
If
we set one of the lower indices of the Christoffel symbol, say c, equal to a,
then we have the
 contracted symbol
 

 
Since
the indices a and σ are both dummies (meaning they each take on all
possible values in the
 implied summation), and since gaσ = gσa,
we can swap a and σ in any of the terms without
 affecting the result.
Swapping a and σ in the last term inside the parentheses we see it
cancels
 with the first term, and we're left with
 

 



Comparing
this with our previous result (4), we find that the contracted Christoffel
symbol can
 be written in the form
 

 
Furthermore,
recalling the elementary fact that the derivative of ln(y) equals 1/y times
the
 derivative of y, and the fact that k ln(y) = ln(yk), this
result can also be written in the form
 

 
Since
our metrics all have negative determinants, we can replace |g| with −g
in these expressions.
 We're now in a position to evaluate the geometrical and
physical significance of the Ricci
 tensor, the vanishing of which constitutes
Einstein's vacuum field equations. The general form
 of the Ricci tensor is
 

 
which
of course is a contraction of the full Riemann curvature tensor. Making use
of the
 preceding identity, this can be written as
 

 
In
his original 1916 paper on the general theory Einstein initially selected
coordinates such that

 the metric determinant g was a constant −1, in
which case the partial derivatives of  all
 vanish and
the Ricci tensor is simply
 

 
The
vanishing of this tensor constitutes Einstein's vacuum field equations (1'),
provided the
 coordinates are such that g is constant. (These field equations
can also be derived from a
 variational principle, taking the Ricci scalar R
as the Hamiltonian function, as discussed in
 Appendix 5.) Even if g is not
constant in terms of the natural coordinates, it is often possible to
 transform the coordinates so as to make g constant. For example,
Schwarzschild replaced the
 usual r and θ coordinates with x = r3/3
and y = -cos(θ), together with the assumption that gtt =
 1/grr,
and thereby expressed the spherically symmetrical line element in a form with
g = −1.  It
 is especially natural to impose the condition of constant g
in static systems of coordinates and
 spatially uniform fields. We spend most
of our time suspended quasi-statically in a nearly
 uniform gravitational
field, so we are most intuitively familiar with gravity in this form. From
 this point of view we identify the effects of gravity with the geodesic
accelerations relative to
 our static coordinates, as represented by the
Christoffel symbols. Indeed Einstein admitted that
 he conceptually identified
the gravitational field with the Christoffel symbols, despite the fact
 that
it's possible to have non-vanishing Christoffel symbols in flat spacetime, as
discussed in
 Section 5.6
 
However,
we can also take the opposite view. Rather than focusing on
"static" coordinate
 systems with constant metric determinants which
make the first two terms of (5) vanish, we can



 focus on
"free-falling" inertial coordinates (also known as Riemann normal
coordinates) in
 terms of which the Christoffel symbols, and therefore the
second and fourth terms of (5), vanish
 at the origin. In other words, we
"abstract away" the original sense of gravity as the extrinsic
 acceleration relative to some physically distinguished system of static coordinates
(such as the
 Schwarzschild coordinates), and focus instead on the intrinsic tidal
accelerations (i.e., local
 geodesic deviations) that correspond to the
intrinsic curvature of the manifold. At the origin of
 Riemann normal
coordinates the Ricci tensor
 

 
reduces
to
 

 
where
subscripts following commas signify partial derivatives with respect to the
designated
 coordinate. Making use of the skew symmetry on the lower three
indices of the Christoffel
 symbol partial derivatives in these coordinates
(as described in Section 5.7), the second term on
 the right hand side can be
replaced with the negative of its two complementary terms given by
 rotating
the lower indices, so we have
 

 
Noting
that each of the three terms on the right side is now a partial derivative of
a contracted
 Christoffel symbol, we have
 

 
At
the origin of Riemann normal coordinates the first partial derivatives of g,
and therefore of 

, all vanish, so the chain rule allows
us to bring those factors outside the differentiations,
 and noting the
commutativity of partial differentiation we arrive at the expression for the
 components of the Ricci tensor at the origin of Riemann normal coordinates
 

 
Thus
the vacuum field equations Rab = 0 reduce to
 

 

The
quantity  is essentially a scale factor for the
incremental volume element V. In fact, for
 any scalar field Φ we have
 

 
and
taking Φ = 1 gives the simple volume. Therefore, at the origin of
Riemann normal (free-



falling inertial) coordinates we find that the
components of the Ricci tensor Rab are simply the
 second
derivatives of the proper volume of an incremental volume element, divided by
that
 volume itself. Hence the vacuum field equations Rab = 0
simply express the vanishing of these
 second derivatives with respect to any
two coordinates (not necessarily distinct). In physical
 terms this implies
that a small cloud of free-falling dust particles initially at rest with
respect to
 each other does not change it's volume during an incremental
advance of proper time. Of course,
 this doesn't give a complete description
of the effects of gravity in vacuum for a typical
 gravitational field,
because although the volume of the cloud isn't changing at this instant, its
 shape may be changing due to tidal acceleration. In a spherically symmetrical
field the cloud
 will become lengthened in the radial direction and shortened
in the normal directions. This
 variation in the shape is characterized by the
Weyl tensor, which in general may be non-zero
 even when the Ricci tensor
vanishes.
 
The
"complete" field equations in the form of (3) signify that three
times the second derivatives
 of the volume, divided by the volume, equal the
corresponding components of the "divergence-
free" energy-momentum
tensor expressed by the right hand side of (3).
 
It
may seem that conceiving of gravity purely as a tidal effect ignores what is
usually the most
 physically obvious manifestation of gravity, namely, the
tendency of objects to "fall down", i.e.,
 the acceleration of the geodesics
relative to our usual static coordinates near a gravitating body.
 However, in
most cases this too can be viewed as tidal accelerations, provided we take a
wider
 view of events. For example, the fall of a single apple to the ground
at one location on Earth can
 be transformed away (locally) by a suitable
system of accelerating coordinates, but the fall of
 apples all over the Earth
cannot. In effect these apples can be seen as a spherical cloud of dust
 particles, each following a geodesic path, and those paths are converging and
the cloud's volume
 is shrinking at an accelerating rate as the shell
collapses toward the Earth. The rate of
 acceleration (i.e., the second
derivative with respect to time) is proportional to the mass of the
 Earth, in
accord with the field equations.
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