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INTRODUCTION 

Almost all quantitative information about the gravitational interaction has been 
obtained from studies of nearly isolated systems composed of a few macroscopic bodies 
such as the solar system or double stars, and in the foreseeable future clean, precise 
tests of gravity-theories are expected to be based exclusively on observations of such 
systems, too, as can be seen, e.g., from the lectures of J.H. Taylor and C.M. Will a t  
this conference. 

At present Einstein’s general theory of relativity (GR) still appears to be the most 
successful theory of gravity. Therefore it is important to have a reliable mathematical 
description of isolated systems based on that theory. 

It appears to be widely believed that the implications of G R  for systems of slowly 
moving, well-separated and therefore weakly-coupled bodies-even bodies with strong 
self-fields such as neutron stars-have been deduced satisfactorily with an accuracy 
sufficient to calculate not only quasistationary, first post-Newtonian effects of order 
(v/c)’ - Gm/rc’ like “anomalous” perihelion advances, but even the dominant, 
secular gravitational radiation reaction effects on the orbits, of order (v/c)’. Such 
calculations have been applied, e.g., to the binary system containing the pulsar PSR 
1913 + 16. A minority of relativity-theorists including the present author does not 
share this opinion, for reasons given below, and in references 1-4 and the papers and 
books quoted therein. 

If one argues by analogy with Newtonian mechanics and Maxwellian electrody- 
namics one obtains “plausible” results concerning, e.g., gravitational radiation damp- 
ing. One can derive from a linearized version of the GR-field equation Einstein’s 
quadrupole formula’ for the gravitational-radiation power loss, and equate that power 
loss to the rate of decrease of the Newtonian total energy expressed in terms of 
Keplerian elements, considered as secularly changing due to perturbing, gravitational- 
radiation reaction forces!.’ The main shortcoming of this and similar arguments and 
calculations is, in my opinion, not that they employ approximations which have not 
been rigorously mathematically justified-that they share with many approximations 
used in physics-but rather that they: 

1) employ notions which are not well defined in terms of basic concepts of GR, 
such as “gravitational field energy,” “total mass and linear momentum” of a 
gravitationally bound body interacting with other such bodies, “point particle,” 
“gravitational radiation reaction force,” “near zone,” “radiation zone”; 

2) use laws which have not been established within GR, such as an “energy 
balance between radiation and material sources”: 

*I dedicate this paper to my son Martin Ehlers. 
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3) depend essentially on ad hoc assumptions which not only are without founda- 
tion within GR itself, but for which there are indications that they may be incompati- 
ble with the fundamental assumptions of GR or with each other, such as global 
coordinate conditions, particular global splittings of the metric into a flat background 
and a “small” perturbation, noncovariant “outgoing radiation conditions,” negligibil- 
ity of various kinds of “small” terms, etc. (For discussions of some of these difficulties 
and proposals to overcome them see references 3,4 ,  and 8-12). 

It seems to me to be an important challenge to find derivations of observable 
relativistic effects, particularly structure and radiation effects, of isolated systems 
which are  free of such shortcomings, and which are not based on mere analogies, 
however plausible, with Newton’s or Maxwell’s theory. Needed are, in particular, 
approximation methods which have been rigorously justified a t  least in theories 
simpler than Einstein’s, and which permit if not an error estimate, a t  least a 
reasonable guess about error bounds. 

In the following pages 1 shall describe some problems of the relativistic theory of 
isolated systems, hoping to stimulate more research in this area. As will be seen, some 
progress has been made in this field since the last Texas symposium, but the main 
questions remain unanswered. Classical GR is not a closed subject; it poses difficult, 
accessible problems related to real observations. 

ISOLATED SYSTEMS 

A general-relativistic model of an isolated system is an asymptotically flatt 
spacetime (M, gab) with a physically reasonable stress-energy-momentum tensor Tab 
satisfying the Einstein-Hilbert equation 

and hence also the local law of motion 

Tabb:b = 0. 

(Here 1 take c = 1, 8rG = I ,  and choose the signature (+---) for the metric.) If the 
system consists of N bodies separated by empty space, Tab has to vanish outside of N 
timelike, connected, spatially compact world tubes.$ 

Such an isolated system may contain incident as well as outgoing gravitational 
radiation. If, in some interval of advanced time, the system is not subject to incident 
radiation or, more generally, if such radiation is not in resonance with a mode of the 
system, then presumably the emission of radiation will be accompanied by a damping 
of the motion of its material sources. (Asymptotically for “t  - + a”, damping may 
already be implied by spatial and null asymptotic flatness since the system then has a 
finite total ADM-energy momentum, part of which is radiated to future null infinity. 
For simple model theories such a behaviour has been d e d ~ c e d . ’ ~  In GR a correspond- 

?Instead of asymptotic flatness one can require (M,g,b) to fit asymptotically into a cosmologi- 
cal model,’’ a possibility which appears not to have been investigated extensively. 

$ln this mechanical model the bodies are idealized as having boundaries, and contributions of 
nongravitational radiation to Tab are not taken into account. Such contributions could be added, 
but are of secondary importance to celestial mechanics. 
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ing theorem has not been rigorously formulated, let alone been proved.) The presence 
or absence of incident and emitted radiation can be expressed in terms of the 
asymptotic behavior of the gravitational field near past and future null infinity, 
respectively.’ ‘ ~ ~ 9 ’ ~  

Proposals concerning the precise meanings of the terms “asymptotically flat,” 
“physically reasonable Tab,” “condition for absence of incident radiation” will be 
mentioned below. We cannot, however, be sure that any of such proposed definitions 
are adequate until we know that models of isolated systems with the stipulated 
properties do, in fact (in a mathematical sense) exist and are sufficiently general to 
describe those physical situations for which the concepts have been invented. It 
appears that we are still far from that kind of knowledge. (The degree of understand- 
ing in this field bears some similarity to that in quantum field theory: There are 
reasonable proposals for the ground rules (“axioms”), a few exact results, no existence 
theorems of sufficient generality; but in spite of this various ill-founded approximation 
methods, plagued by infinities and other difficulties and not related to the exact parts 
of the theory, give remarkably good agreement with observations.) 

Before discussing later in this paper the problem of constructing models of isolated 
systems-a task which up to now can be tackled by formal approximation methods$ 
only, except for one-body problems-I shall consider two topics which have been 
treated within the exact theory: the description of bodies as a whole and the derivation 
of their overall laws of motion, and the asymptotics of gravitational fields near various 
parts of infinity. The concepts, results and methods of these investigations would seem 
to be needed, a t  least in principle, before the main, global problem of constructing 
isolated systems can be treated rigorously, and they may also help in improving 
approximation methods. 

BODIES AND LAWS OF MOTION 

In order to represent mathematically the bodies (planets, stars, black holes) of an 
isolated system in GR one has to specify either the stress-energy-momentum tensor 
Tab in equations 1 and 2 or the parts of the event horizon which bound the black 
holes. 

In the following it will be assumed, as part of the “physical reasonableness” of Tab, 
that T t  maps the interior of each half of the null cone into itself, a condition which 
implies that for all local observers the energy density TW is positive, the magnitude of 
the density of linear momentum is less than TW, and the stresses are also dominated by 
T W .  

The model of a point particle supported by a timelike world line z(t). given 
formally by 

Tab(x)  = m 1 ia ib( -ggdiczd) - ’ /26(x ,  z)dt, (3) 

is incompatible with the field equation 1. (There does not exist a solution of (1) 

$By “formal approximation methods” I mean methods for which it is not known whether they 
do, in fact, provide approximate solutions to any well-defined problem of the full theory, due to 
lack of convergence proofs, error estimates, etc. 
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representing a spherically symmetric gravitational field generated by a distributional 
source (3). If (3) is used formally in approximation methods to solve (I), the metric not 
only diverges a t  the particle and thus makes equation 3 mathematically meaningless, 
but in addition has the wrong signature near the particle, even in linear approxima- 
tion. Disregarding these trivial facts leads to spurious difficulties which may obscure 
the real problems. Using the word “renormalization” is no cure if such a procedure is 
not carried out beyond the linear approximati0n.T The theorem that equations 2 and 3, 
together with the assumption that gab is a C’ Lorentz metric in a neighborhood of the 
particle’s world line, imply the geodesic law, is by itself not relevant for G R  since its 
assumptions contradict equation 1. A derivation of the geodesic law has to be based on 
assumptions which are compatible with (l), not only with (2). Essential steps towards 
such a derivation are contained in references 16-19, 32). Therefore ordinary bodies 
(as opposed to black holes) have to be represented in classical G R  primarily as 
extended, deformable structures, that is, connected, spatially compact submanifolds 
with timelike boundary hypersurfaces, as  has been emphasized by F ~ c k , ’ ~  Dirac?’ 
Bondi?‘ Chandrasekhar” and others. Of course, one would like to describe bodies for 
most purposes of celestial mechanics by a world line and a few parameters, but the 
possibility and nature of such a simplified, approximate model has to be deduced from 
the primary model since ad hoc assumptions like (3) do not work. 

I remark in passing that a Newtonian mass point with its gravitational field, 
represented in the spacetime formulation of Newtonian theory,23 can be obtained as an 
(exact) Newtonian limit” of the Kerr or Schwarzschild spacetime for fixed mass and 
angular momentum parameter.26 Combined with well-known black-hole theorems this 
indicates that the simplest “objects” of relativistic mechanics, corresponding to 
Newtonian mass points, are black holes. Some groundwork towards a theory of 
isolated systems of black holes has been done by Gibbonsz7 and D’Eath.19.28 

Due mainly to the work of DixonI7 and some recent extensions of it by Ehlers and 
RudolphI8 and by Schattner,” a framework for the description of (ordinary) extended 
bodies in G R  is available. For any such body, existence and uniqueness of a 
center-of-mass world line I:z”(s) (contained in a convex hull of supp Tab) have been 
e ~ t a b l i s h e d ; ~ ~  a timelike linear momentum 4-vector pa(s), an angular momentum 
bivector Sab(s) and a sequence of multipole moments I ;  (s) have been defined 
~ovar ian t ly’~  on I in terms of gab and Tab; and it has been that these dynamic 
body voriobles satisfy a finite system 

S o b  + 2 i b p b l  = 2 ~ a b  

of ordinary tensor differential equations. (The “force” Fa and “torque” Lab depend on 
the multipole moments and the field gab - V’ measures the deviation of the 
CM-tangent vector z’ from the unit vector collinear with pa and is small for nearly 
spherical bodies.’* The explicit forms of F’, rb and V’ are given in references 17, 18. 
One has p , V a  = 0, pasab = 0.) Conversely, the field Tab can be reconstructed from g a b  

1In this connection, see also reference 68. 
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and the body variables (za, pa, Sab, I ; . ) ,  provided (4) holds; the reconstructed Tab obeys 
(2). (See reference 17 and, for some mathematical extensions, see reference 30.) The 
last two statements are particularly important since they show that the body variables 
describe the body completely, and that the equations 4 contain the same information 
as the local equation 2. Even the existence of such “global” body variables is 
remarkable. In the terminology proposed by Havas and Goldberg3’ equations 4 are the 
“laws of motion” for extended bodies. They relate the evolution of the body variables 
to the gravitational potential g a b  due (at least partly) to these bodies themselves. These 
laws are to be regarded as intermediate results on the way towards “equations of 
motion,” viz. evolution equations containing body variables and, perhaps, nondynamic 
fields like a background metric only. (It is very questionable whether exact “equations 
of motion” exist in GR, in contrast to “laws of motion.” I suspect that equations of 
motion exist as approximations only.) 

The expressions Fa and Lab in equations 4 are bilinear functionals of the multipole 
moments and certain “gravitational field strengths” derived from the metric gab and 
its connection. It is expected that these field strengths depend, within a particular 
body, mainly on that body itself and vary rapidly within the body, and that they 
depend only weakly on the other bodies of the system if the distances between the 
bodies are much larger than their sizes. 

As in Newtonian mechanics and Maxwell-Lorentzian electrodynamics one would 
like to subtract selffields from the laws of motion (4) in such a way that the remaining 
external fields (for each body) vary only slowly within the body so as to permit a 
mult iple  approximation of the external forces and torques. Some self-field terms 
would be expected to  represent radiation reaction forces, others might provide 
(finitely) “renormalized” variables pa, 3ab. Such a program has not been carried out, 
but in view of the mentioned linearity it seems accessible, a t  least in conjunction with 
approximation methods to solve (1). 

The Dixon-framework for the description of bodies in G R  also offers a way to 
introduce simple body models such as  “dynamically or “dynamically 
spherical” bodies, defined by suitable invariance properties of the system of multipole 
moments along the CM-world line 1. Such body models might be useful relativistic 
analogs of Newtonian mass points or rigid bodies which avoid the inconsistencies 
inherent in combining (1) with (2). 

Unfortunately, no possibility to combine the Dixon framework, which is based on 
(2) alone, with the field equation 1 has yet been suggested. Nevertheless, hitherto this 
approach is the only one in which dynamic body variables such as 4-momentum have 
been defined covariantly which obey various nontrivial, physically suggestive laws. 
(For further results see references 17, 18, 29, 30). 

ASYMPTOTICS 

Suppose a spacetime ( M ,  gab, Tab) obeys the field equation (1) and contains a finite 
number of bodies as considered in the previous section. One would interpret it as a 
model of an isolated system only if its gravitational potential gab could be viewed as 
due to the bodies of the system (and, perhaps, some incoming radiation), and not to 
any outside matter. One cannot express this isolatedness by requiring, e.g. that gab be 
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the “retarded field of Tab’’ since, 1) there are no Green functions associated with the 
nonlinear field equation 1, and 2) a “flat, nonMachian part” of the metric 
representing “pure inertia” would a t  any rate not be determined by Tab. It is, however, 
possible to formulate conditions on (M, gab) which express that the metric approaches 
that of flat spacetime “at infinity.” Due to the basic work of Bondi, Sachs et al.,” the 
geometrization and extension of their asymptotic description along future null cones to 
spacelike and past null infinity by Penrose,” and extensive subsequent work by 
Geroch, Schmidt, Sommers, Ashtekar and others, there exists now an eleborate, 
flexible framework for describing in detail various kinds of asymptotic flatness. For 
systematic accounts and references see Geroch,” and Ashtekar and 
H a n ~ e n . ’ ~  The last paper contains what is perhaps the most comprehensive notion of 
asymptotic flatness which has been proposed so far. 

The key idea, due to Penrose, is to compress all distances “near infinity” by a 
conformal rescaling gab - gab = Q2&b of the physical metric gab, and to attach to the 
physical spacetime a boundary of “ideal events” a t  which both the conformal factor Q 
and the unphysical metric gab remain well behaved, with Q = 0, although gab  “becomes 
infinite” there. If this is possible (such that several technical conditions are 

The boundary of an asymptotically flat spacetime consists of future and past null 
infinity, called 3 + and 9 - ,  respectively, and spacelike infinity, lo. 3’ is the set of 
ideal end points of null geodesics (test signals) leaving the system; 3- ,  the set of ideal 
initial points of null geodesics incident upon the system; and, a t  least in the Kerr 
spacetime and its specializations, lo consists of a single point io, the’common ideal end 
point of all spacelike geodesics, which also compactifies all spacelike, global Cauchy 
hypersurfaces of the physical spacetime. The union J +  U {io} U 3- forms the “null 
cone at  infinity” with vertex io. 

One merit of this extension of the physical spacetime by an ideal boundary is that 
the asymptotic behavior of fields a t  large distances from the material sources need not 
be described in terms of ill-definable limits, but can be described in terms of local 
properties a t  the boundary, like differentiability. A price one has to pay for this 
“finitization” is that one has to be very careful in the specification of the degree of 
differentiability of the conformal factor Q and the unphysical metric gab at  infinity, 
particularly a t  io, in order not to lose physically needed generality. (Differentiability a t  
infinity reflects the rate a t  which fields in physical spacetime decrease. Simple 
analogy: A three times continuously differentiable function f :  R - B has the 
propertyf(x) = a + bx-’ + C X - ~  + O(x-’) if the function g : 73 - {O} - R defined 
by g(x)  =f(x-’)  can be extended to R such that the extended function has continuous 
derivatives up to the third order a t  0.) 

An additional merit of the latest a p p r ~ a c h ’ ~  is that within it the point io 
representing spatial infinity has a tangent space T,o with a unique Lorentz metric gab. 

This tangent space provides a home for the Arnowitt-Deser-Misner 4-momentum P,“, 
the coordinate-independent, intrinsic nature of which had remained somewhat obscure 
so far. Now P,” has gained the respectable status of a vector a t  io. What is more.11 also 
the Bondi-Sachs-Penrose 4-momentum P+”(Z), defined on cross-sections 2 of future 

the spacetime is said to be asymptotically j u t .  

/The following remarks are based on a preprint” which became available only after the Texas 
symposium. They are included here since they partly answer an old question discussed in my talk, 
and permit me to simplify the subsequent remarks about total energy-momentum. 
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null infinity (or p_"(Z), at  past null infinity), can be considered as a vector a t  i", so that 
Po" and P+"(Z) can be meaningfully related to each other." 

Po" is interpreted as the total energy-momentum of the system, including all 
contributions from the gravitational field and the material sources. It is a time- 
independent property of the state (= Cauchy data) of the system. On the other hand, 
the difference P+"(Z,) - P+"(Z,) = : PRa(Z,, 2,) represents the energy-momentum 
carried out of the system by gravitational radiation between outgoing null hypersur- 
faces ending a t  ZI and Z2, respectively, with Z2 lying in the future of 2,. Thus, the 
function 2 - P+"(Z) informs about the evolution of the system. 

Ashtekar and Magnon-Ashtekar have shown3' that if the 4-momentum carried by 
the gravitational waves emitted between the infinite past and some retarded instant Z 
is finite, then-as had been conjectured for some time-Iim,,o P+"(2) = Po" holds, 
whence one can state the asymptotic energy-momentum balance 

= P+"(Z)  + PRa(Z), (5) 

valid for any cross section 2 of Y+, i.e. for any retarded time. The 4-momentum 
radiated out before 2, PRa(Z), is to be positive** or zer+-gravitational 
waves carry positive energy. If P+"(Z), the 4-momentum "left over" a t  the instant 2, 
were also positive, then, from (3, Poa would be positive, too, and (5) would imply that 
the total amount of energy that a system could possibly emit in gravitational waves 
could never exceed the total energy, P:. 

Unfortunately, general conditions for P+"@) to be positive have not been found, 
although the representation3' 

of P+" as a flux of the Landau-Lifshitz energy momentum complex T~~ through a 
spacelike, asymptotically null hypersurface H terminating a t  Z, evaluated in special 
asymptotically orthonormal coordinates, as well as an inequality derived by S t r e ~ b e l ' ~  
suggest a t  least physically reasonable suficient conditions for this to be the case. 

On the other hand, general conditions have been found under which the ADM- 
energy, P,,", is a strictly positive functional of asymptotically flat initial data supported 
by spacelike Cauchy hyper surface^,^^^' whence under those conditions Poa is positive 
for an asymptotically empty and flat spacetime in the sense of reference 36. (This 
positivity is not related to an intrinsic arrow of time, for the 4-vector Po" is dejned 
relative to a conventional time-orientation of spacetime such that its positivity is 
preserved under a switch of time-orientation.) However, in contrast to a positivity 
statement about P+", the positivity of the ADM-energy or even of Po" does not, by 
itself, imply restrictions about the energy that can be emitted in the form of 
gravitational waves. 

In order to draw physically useful conclusions from the constancy (hypersurface 
independence) and positivity of Po" it appears to be necessary to decompose, for "late" 
Cauchy hypersurfaces when radiation has travelled away from its sources, the total Po" 
into summands assignable to the source and the radiation, respectively, and to 
establish positivity separately for these parts. The possibility of such a procedure is 

**We call a 4-vector positive if it is contained in the interior of the future null half cone. We 
assume spacetime to be time-oriented. 
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suggested by a formula4* analogous to (6) for Po", but I am unaware that it has been 
carried out. 

Related to the problem just mentioned is the question of the connection between 
the Dixon 4-momenta pa of the bodies considered in the previous section and the 
asymptotic quantities Po", P+a. Expressions of P," and/or P," in terms of the pa and 
field contributions would seem to be needed to relate the asymptotic energy- 
momentum balance (5) to the motion of the bodies and, thus, to observable properties 
of isolated systems. 

The problem of defining asymptotic angular momenta, to establish for them a law 
analogous to (5) etc. has been considered, but will not be discussed here. (See 
references 12, 36, 39, 43.) 

Whereas future null infinity is used to describe outgoing radiation, incident 
radiation can be described naturally in terms of asymptotic fields on past null infinity, 
9 - .  The analog of equation 5 for 9-  shows: The condition 

- Pa = const (7) 

which implies _Pa = P,") is necessary and sufficient for absence of incoming gravita- 
tional radiation. This condition is equivalent to the vanishing of the advanced 
time-derivative of the asymptotic shear a t  9- .  (For these and alternative conditions 
see references 39, 44.) 

For asymptotically empty and Rat spacetimes the metric, curvature, etc. can be 
represented, in a neighborhood of null infinity (far radiation zone), by asymptotic 
series in inverse powers of a radial coordinate, with coefficients depending on angles 
and retarded (or advanced) time; see, e.g. reference 45 and the references therein. 

I conclude this section with some critical remarks taken partly from B.G. 
Schmidt.35 The concepts of asymptotic flatness have been invented to describe the 
gravitational field of isolated systems far away from the sources. The main motiva- 
tions came from linearized theory, stationary exact solutions and peeling properties of 
algebraically special vacuum fields. Since neither an exact solution of Einstein's field 
equation describing a bounded source emitting gravitational radiation nor even an 
existence proof for such a solution is known, the definitions of asymptotically flat 
spacetimes given so far have to be considered as proposals, the adequacy of which, for 
their intended purpose, is open to questions and needs to be investigated further. In 
particular, it is not known whether "typical" radiation fields fall off, and sources 
behave sufficiently quietly in the distant past, in order that a null- or space-like 
infinity exists and/or has the differentiability which has been assumed (conjectured) 
in currently used definitions of asymptotic flatness. Some perturbation calculations on 
scalar, massless waves in Schwarzschild spacetime by B.G. Schmidt and J.M. 
StewartM and computations on the relativistic Kepler problem by M. Walker and 
C.M. Will4' indicate that the usual differentiability requirements at 9 are, in fact, too 
strong even for simple examples which belong to the intended domain of application of 
the notion of asymptotic flatness. In this connection it may also be appropriate to 
remember that it is not known, in spite of extensive work on the initial value problem 
for Einstein's equation, whether the maximally developed ~ p a c e t i m e ~ ' , ~ ~  belonging to 
asymptotically flat initial data has even a piece of null infinity, and whether Cauchy 
data associated with boosted Cauchy hyper surface^^^ are asymptotically flat. 

It seems important to keep in mind that asymptotics is not a theory for its own 
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sake, but a tool for analyzing and, I hope, constructing models of isolated systems and 
deriving properties of them. As a tool, it is important in so far as it serves these 
purposes. Since exact models of radiating systems are not in sight, it appears to be 
urgent to connect the concepts and constructions of asymptotics with approximation 
methods, even if that requires sacrificing some of its geometrical beauty or modifying 
its assumptions. 

APPROXIMATION METHODS AND EQUATIONS OF MOTION 

Attempts to construct relativistic models of isolated systems containing more than 
one body have been made since the beginning of general relativity by means of formal, 
analytical approximation methods and, only recently, by numerical methods. For the 
latter, see L. Smarr” and the contribution by D. Eardley to these proceedings. 

In this section I shall outline a new, improved version of a weak-field, slow-motion 
approximation method; indicate results which have been obtained by means of it; 
discuss its drawbacks and suggestions to overcome them; and make some remarks 
about alternative methods. A general review of approximation methods will not be 
attempted here. 

The approximation method to be outlined is a modification, proposed and sketched 
by myself4 and elaborated by D. Kerlick” and A. Caporali;’ of the method of J.L. 
Anderson and T.C. D e ~ a n i o . ~ ~  Theirs as well as the new method incorporate a b  initio 
Fock‘s no-incoming-radiation-condition24~44 into a systematic iteration scheme which 
uses the harmonic gauge throughout, in contrast to the method of Chandrasekhar et 
al?‘ The new method is, at least formally, an improvement in two respects: 1) All 
approximate metric components, Christoffel symbols etc. needed to set up the 2’/2 
post-Newtonian equations of motion are finite; no divergent expressions occur during 
the calculations leading up to those equations. 2) The components of the metric and 
the connection a t  some coordinate time are obtained as functionals of the Newtonian 
Cauchy data (mass density and coordinate 3-velocity of matter) pertaining to that 
same instant. Hence the post-Newtonian forces in the equations of motion do not 
contain time derivatives. Thus, initial data for the matter variables determine, a t  least 
formally, a unique solution, and classical perturbation theory can be applied directly. 
On the other hand, the new method does give divergent terms in the third PNA. (This 
will be discussed below.) 

The new method is based on the reduced Einstein equation 

obtained by writing equation (1 )  in terms of the contravariant metric density gab : = 

J-ggab (g : = det g a b  = det gab) and omitting terms containing gBb,b. Clearly, a 
solution of (8) obeys (1) provided the harmonic gauge condition 

gab*b = 0 (10) 
is also satisfied. One now chooses an auxiliary flat Lorentz metric lab and defines the 
metric deviation 

(1 1) k “ b .  . = - $b. 
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There is no invariant measure of the “smallness” of knb at  a point (E. Ede? has 
shown that no natural distance function exists on the set of Lorentzian metrics on a 
vector space.) For the following approximation scheme in which kab is computed first 
and (1 1) is then used to find gab, gab etc., it is sufficient to assume that for 0 1. x 5 1, det 
( T ” ~  + nkab) < 0; let the set of these kab be denoted a s R .  (This mild weak-field 
assumption holds even for neutron stars.) One verifies easily: 

1) gab = vab + kab is Lorentzian if kab is inR. 
2) (- g ) .  ( -g ) - ’ I 2 ,  gab and gb are analytic functions of kab on 9. 
3) The partial derivatives ( -g),c,. . . , gab,c are (in an obvious sense) analytic 

functions of kab and kab,c provided kab is in R. Analogous statements hold for higher 
derivatives and, therefore, for rka, Rab etc. 

One now works in orthonormal coordinates with respect to vab so that (10) can be 
replaced by 

kab,b = 0, (12) 
and rewrites (8) (modulo (10)) as 

1 
2 
- kab = g(Tab + tab) + (ka‘bkd’c),ed (13) 

- 
where 0 : = v2 - a,, is the flat-space wave operator. In&,  the Landau-Lifshitz 
energy-momentum pseudo-tensor tab of the gravitational field depends analytically on 
kab and its first derivatives. The last term on the r.h.s. of (13) contains even second 
derivatives of Pb; its divergence vanishes identically. Hence, (12) and (13) imply the 
(nontensorial) conservation law 

(-g(Tab + tab)),, = 0. (14) 

Tab = ( p  + P ) U ” U b  - pgab, p = P ( P h  IP I < p, (15) 

Choose as a source model an isentropic perfect fluid, 

and define as matter variables the density p and the coordinate 3-velocity : = 

( U  ’/(I ’). Because of gab (I” Ub = 1 and (1 l), U ’ and Tab can be considered as functions 
of p, v = (d) and kab; 

- 

Tab = Tab(p,T, k d )  (16) 

The last condition in (15) implies that T: satisfies the energy condition formulated in 
the section entitled “Bodies and Laws of Motion.” 

In view of the remarks made after equation 1 1,  equation 13 is of the form 

1 t 

2 - -0 k = ( 1  + f i  ( k ) )  T ( p ,  Y, k )  + f , ( k ,  d k )  

+ f2(kr dk,  d ’k)  = : 2xA. (17) 

Here tensor indices have been suppressed, and f v  denotes a (numerical or matrix 
valued) analytic function of k and the indicated derivatives which starts with terms of 
order v in k and its derivatives. 

If k satisfies Fock’s condition for absence of incoming r a d i a t i ~ n , ~ ~ . ~ ~  
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k = o(l), - + - k = o(r-I) (:r sat) 
uniformly in neighborhoods of past-directed, flat-space null cones, then (17) implies, 
via Kirchhoff s identity, the integro-differential equation 

Postponing objections against (18), let us proceed with the algorithm. One now 
formally Taylor-expands the integrand with respect to its time argument a t  t ,  
obtaining 

where 

Mf)(? t )  : = /fG + ;, t )  Is;l”d3Y. (21) 

The right hand side of equation 20 contains time derivatives of all orders due to the 
retardation expansion, just as the field expansion in Lorentz’s electron theory. 
Convergence of the series in (20) is neither to be expected (except for stationary 
situations) nor relevant; it is part of a formal algorithm. 

One can now carry out the following i ter~t ion:~”’  Put k = 0 in A and in equation 
14. Define, guided by (20), kab by 

(1 )  

( 1 )  kxL : = o for A, p = 1,2 ,3 ,  (22) 

and eliminate 16,s by means Of (M),+,,, to obtain kab as a functional ofpandv.  
(1) 

Then, insert ksb into A (equation 17) and (14) and compute kdb from (20), keeping 

for each component two more terms of the series than were used in (22), and eliminate 
time derivatives of p andyby means of the “improved” equation 14, to obtain kab as a 

functional of p, and their spatial derivatives. Continue in this way to obtain kab 

If the density p has compact support this procedure gives convergent integrals for 
/cab and /fb. Most contributions to kPb are also well-defined, but some of its terms 

(1) (2) (3) 
diverge.” To order the various terms in kab, Tab : = Tab(p,y, k”) and the 

expressions derived from them, like rka etc, one can either keep the speed of light c in 

(1) (2) 

(2) 

etc.?? ( 3 )  

(4 (4 (4 

(4 

??This algorithm to obtain k , k etc. is neither a formal power series expansion nor an 
(1 )  (2) 

iteration in the usual sense. It is similar to a Hilbert expansion used to obtain so-called “normal” 
asymptotic series solutions of Boltzmann’s integro-differential equation. 
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all equations and order terms according to powers of c- ’ ,  or use physical arguments to 
assign orders of magnitude to p , x  dp/dp etc. to obtain a dimensionless small 
parameter for this purpose. 

If kab is in R , it determines a Lorentz metric gab. There is no reason for the pair 

(gab, Tab) to obey Einstein’s equation approximately. But if one imposes on such a pair 

an approximate equation of motion by inserting gab, Tab into the local law of motion 

(2) and keeping consistently terms up to some assigned order of magnitude, or, 
alternatively, imposes the conservation law (14) or the gauge condition (12), then one 
might expect-from the way the algorithm has been set u p t h a t  those solutions of 
the approximate equations of motion which describe slowly moving bodies with small 
“compactness” (= Schwarzschild radius/geometrical radius), do indeed give approxi- 
mate solutions of (1) in a near zone containing the bodies, small compared to a 
wavelength characteristic of the source motion. This expectation is supported, at least 
for the first post-Newtonian approximation, by some plausible estimates” of the 
“error tensor” Eab : = Rab - (Tab - ‘/2 gab T )  associated with a pair ( gab, T a b ) ,  but no 

exact error estimates are known. 
If the local, first post-Newtonian equations of motion (which are equivalent to 

those of Chandrasekhar2’ and Synges6) are integrated over the bodies, and if these 
bodies are assumed to be well-separated, nearly spherical, and nonrotating, then one 
recovers for the center-of-mass motions the Einstein-lnfeld-Hoffmann equations, in 
accordance with older results, provided one identifies the positions and masses of EIH 
with suitable quantities defined within the 1 PN-frarnew~rk.~’~” (In connection with 
this derivation, and in view of the remarks about the self field problem, the following 
may be of interest. If, within the IPNA, one subtracts the self potential of a body from 
the total potential, then because of the nonlinear dependence of the potential on the 
source variables, the resulting difference potential still depends on the body under 
consideration, and the self potential depends on the other bodies too. What 
distinguishes the self potential of a body from the difference potential is that, within 
that body, the former varies on the scale of the size of the body, whereas the latter 
varies slowly, on the scale of the distance to the other bodies. This should be valid also 
in the exact theory, as emphasized by Dixon.”) If one assumes the bodies to be axially 
symmetric and rotating, one obtains in addition the spin-precession formulae (Capo- 
rali and Spyrou, to be published) derived previously by different, in my opinion, less 
satisfactory methods.5860 

As far as I am aware, the second post-Newtonian, local hydrodynamic equations 
of motion have not been used to obtain equations of motion for bodies as a whole. 

Being in possession of the improved, infinity-free 2’/2 PN local equations of motion 
derived by Kerlick, one can repeat the Chandrasekhar-Esposito5‘ analysis to identify 
radiation damping force densities, and set up a near-zone energy-momentum balance 
which can then, hopefully, be connected with the asymptotic balance (5) as indicated 
in FIGURE 1. This work has not yet been completed. 

Let us now look at the approximation method critically. A first question mark 
should be attached to equation 10 or 12, respectively. It has not been shown that 
harmonic coordinates exist globally, as was assumed above. Although Y. Choquet- 
Bruhat, D. Christodoulou and M. Francaviglia6’ have recently shown that such 
coordinates do exist globally prior to some Cauchy-hypersurface if the metric is in a 

“) “) 

(N) (N) 

(N) (N) 

(N) (N) 



Ehlers: General Relativity 29 1 

FIGURE 1. Connection between near-zone and asymptotic energy-momentum balances. 
Outside R is the radiation zone, inside N the near zone containing the source S. S, and S2 are 
oriented, spacelike cross sections of the near zone; T is a timelike cylinder connecting the 
spherical boundaries of S,, S,, respectively; U,, CJ2 are outgoing null hypersurfaces; and Wis the 
part of future null infinity which is between the cross sections 2, and &. P(S,) etc. denotes the 
4-momentum flux of the Landau-Lifshitz energy-momentum complex through S, etc. (as in 
equation 6 of the text), computed in a suitable, approximately orthonormal coordinate system. 
Then the inner balance is P(S,) - P(S,) - -P(T) ;  it can be approximately evaluated by means 
of the near-zone approximation, provided the Si are chosen suitably. This relation is substantially 
equation 110 in reference 22, interpreted geometrically. The outer bulance is P(W)  - P ( T ) ,  
since6’ P ( Q )  - 0 for outgoing radiation. The asymptotic balance (text, equation 5 )  is P(w> - 
PR(Z,+) - Bondi-flux. In summary, then, (P(S2) - P(S,))-- = -(PR(Zl,~2))upF. This 
sketch indicates how one may be able to obtain an “overall balance,” provided one carries out 
several estimates, defines suitable coordinates, etc. Such a reasoning should also provide 
inequalities to define a near zone and a radiation zone; it has not been carried out, as far as I am 
aware. 
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certain sense asymptotically stationary in the infinite past, this still does not seem to 
cover generic cases of physical interest. Secondly, and more importantly, condition 
(18) in harmonic coordinates may not express absence of incoming radiation correctly; 
for, as is well known, already in the Schwarzschild spacetime the obvious splitting (11) 
with respect to harmonic coordinates leads to flat-space, past-directed null cones 
which are not asymptotic to the correct null cones, but which deviate from them 
logarithmically and terminate not on 3- but a t  spatial infinity, lo; and even along the 
curved-space, past-directed null rays, the kab do not seem to obey the conditions’ (18). 
(This point needs further clarification.) Moreover, using (13) or (19) one propagates all 
higher-order fields along the wrong null cones. Since the last term in equation 13 is the 
effective source contribution which compensates for the use of the wrong wave 
operator, and it is this term which leads to the lowest-order divergences in the 
modified slow-motion method, it appears to be necessary to relax the harmonic 
condition (lo), and either to improve the splitting (1 1) at  each step of the iteration, or to 
propagate the (N + 1)th-order field by means of the curved-space, (N-th)-order wave 
0perator.6~ It is not clear whether any improvement will leave the results up to the 2’/2 
PN order intact, so doubt remains concerning their validity. 

The use of the wrong propagation is, of course, a shortcoming also of the standard 
“fast-motion,” Lorentz-invariant approximation  method^.^'.^ By combining a conver- 
gent iteration with one using “the wrong propagation,” D. Christodoulou and B.G. 

were able to prove that the latter iteration, although it in general diverges, 
nevertheless leads to an asymptotic approximation. Useful and exact estimates to 
justify a truncated retardation expansion (19) - (20) are unknown to me. 

So far, it appears to me that use of matched asymptotic  expansion^^^ has not led to 
more concrete results or more exact derivations in the context of isolated systems than 
the more conventional method outlined above, although the underlying idea is 
attractive. 

A. R o s e n b l ~ m ~ ~  has recently calculated the energy loss due to emission of 
gravitational radiation during small angle scattering, using a fast-motion analog of 
the first post-Newtonian approximation. Since he treated the bodies as points, he had 
to regularize infinite, linear self field-terms, and he had to assume the existence of 
higher-order regularization procedures, though not their form. His result differs by a 
factor of about 2.3 from the one obtained by means of Einstein’s quadrupole formula. 
According to this calculation the contributions due to the nonlinear, second-order 
terms of the metric are numerically comparable to those from the linear approxima- 
tion. This result may cast some light on the antidamping obtained long ago by S.F. 
Smith and P. Havas6’ on the basis of a linear, fast approximation calculation in which, 
perhaps, nonlinear terms would over-compensate the linear ones. However, the bound 
state problem has not been treated yet by a fast method beyond the linear stage. 
Rosenblum’s result accentuates the need for further work to clarify the gravitational 
radiation damping problem. 

SUMMARY 

The first post-Newtonian approximation that includes the EIH-equations has been 
obtained by different formal approximation methods. The results agree; there do not 
appear to be serious objections against its validity. Thus the theoretical basis for the 
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four classical tests of GR and the spin precession effects, for bodies of arbitrary 
compactness and for black holes, seems to be firm. A corresponding statement cannot 
be made, in my opinion, for the higher approximations, particularly not for gravita- 
tional radiation reaction effects, for reasons which I have discussed. 

Even at the 1PN level a connection of the approximation schemes with intrinsic, 
coordinate-free formulations would seem to be desirable for understanding, if not for 
computing effects. The basic problem of rigorously justifying the formal approxima- 
tion is perhaps outside the reach of present mathematics. 

Can a combination of approximation methods with exact approaches help to 
overcome the difficulties and unclarities discussed above, and to obtain answers to 
“mncrete’’ questions? Can one formulate questions pertaining to, say, “secular 
effects of the emission of radiation on the motion of binary systems,” by means of 
intrinsic concepts of Einstein’s theory without reference to approximation methods, 
and compute such effects by methods which do not use assumptions contradicting the 
underlying precise formulation? Can the recent work on the dynamics of GR, i.e. the 
evolution of Cauchy date, help to improve approximations? Maybe at one of the future 
Texas symposia we shall get some answers. 
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